
Introduction to IND

and Recursive Partitioning

WRAY BUNTINE

RESEARCH INSTITUTE FOR ADVANCED COMPUTER

SCIENCE

RICH CARUANA

SAN JOSE STATE UNIVERSITY

AI RESEARCH BRANCH, MAIL STOP 269-2

NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94035

(415)604-6527

('',,.'_i.',_:;.[_:_i. i-'..'_;_T[,T[:_]_[f,_'; (,",!A!_A) 100 i:)

AN D t'q92-2602 ;'_

L_nc I _L_S

N/ A Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-91-28

October, 1991

AI I-{,ESEARCH BRAN.

NASA AMES RESEARCh
TECHNICAL REPORT LIST

MARCH 1992

FIA-91-27

Constraint-Based Scheduling

MONTE ZWEBEN September 1991

The GERRY scheduling system developed.1_y NASA Ames with assistance from the Lockheed Space
Operations Company, and the Lockheed A_tificial Intelligence Center, uses a method called constraint-based

iterative repair. Using this techniq_i one encodes both hard rules and preference criteria into data

structures called constraints. GE_I_Y repeate_tl](attempts to improve schedules by seeking repairs for

violated constraints. The systen'(_provides a gene_a! scheduling framework which is being tested on two
NASA applications. The largex/of the two is the Spa_e Shuttle Ground Processing problem which entails

the scheduling of all the mspeciton, repair, and maintenaJice tasks required to prepare the orbiter for flight.
The other application invo)_'es power allocation for the NASA Ames wind tunnels. Here the system will be

used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the

GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system
would be used for manufacturing, transportation, and military problems.

FIA-91-28

Introduction to IND and Recursive Partitioning
WRAY BUNTINE AND RICH CARUANA October 1991

This manual describes the IND package for learning tree classifiers from data. The package is an integrated
C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian

variations. The package includes routines for experiment control, interactive operation, and analysis of tree

building. The manual introduces the system and its many options, gives a basic review of tree learning,
contains a guide to the literature and a glossary, lists the manual pages for the routines, and instructions on
installation.

FIA-91-29

Acquistion and Improvement of Human Motor Skills:/_r_aing Through Observation and Practice

WAYNE IBA /// November 1991

/
Skilledmovement isan int_'_ralpart ofthehurr)_uexistence.A betterunderstanding ofmotor skillsand their

development isa prerequisite_ the constructionoftrulyflexibleintelligentagents.We presentM_ANDEI_

a computational model of humX_n motorbehavior , that uniformly addressesboth the acquisitionof skills

through observation and the imp_ve_nt of skillsthrough practice.Mh_ANDER consistsof a sensory-

effector interface, a memory of moments, and a set of performance and learning mechanisms that let

it recognize and generate motor s_Jlls. _._he system initially acquires such skills by observing movements

performed by another agent and/_onstructin_g, a concept hierarchy. Given a stored motor skill in memory,
M " \

tEANDER will cause an effe_or tobehave aPl_opriately. All learning involves changing the hierarchical

memory of skill concepts to .m/¢re closely correspond to, either observed experience or to desired behaviors. We
evaluate MIEANDER empi_i_ _ally with respect to how v_'0v_lit acquires and improves both artificial movement

types and handwritten sTfpt 1.etters from !he alphabet. "We also evaluate MiEANDER as a psychological
model by comparing its/behavior to robust phenomena in ia\u[nans and by considering the richness of the
predictions it makes. ;

20

REPORT DOCUMENTATION PAGE J OMB No. 0704-0188

Public reporting burden for this collection of information is _stlmated to average 1 hour .._?r response, including the time for reviewing instructions, searching existing data source-_,

gather ng and maintaining the data needed and completing-and reviewing the collection cf information. Send comments regarding this burden estimate or any other aspect of t_Js

coilection of information, including suggestions for reducing this burden, to Washington _eadcluarters Services, Directorate for information Operations and Reports, 1215 Jeffecson

DavLs Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188).Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2= REPORT DATE 3. REPORT TYPE AND DATES COVERED
Dates attached

4. TITLE AND SUBTITLE

Titles/Authors - Attached

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Code FIA - Artificial Intelligence Research Branch

Information Sciences Division

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Nasa/Ames Research Center

Moffett Field, CA. 94035-1000

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

Attached

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Available for Public Distribution

13. ABSTRACT (Maximum 200words)

Abstracts ATTACHED

12b. DISTRIBUTION CODE

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19,
OF REPORT OF THIS PAGE

SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 CRew 2-89)
Prescribed by ANSI Std. Z39-18

298-102

Introduction to IND and Recursive Partitioning

Wray Buntine, RIACS

Rich Caruana, SJSU/NASA

NASA Ames Research Center

Mail Stop 269-2

Motfet Field, CA 94035

Version 1.0

September 23, 1991

Copyright (_) 1991 Research Institute for Advanced Computer Science.

Abstract

This manual describes the IND package for learning tree classifiers from data. The package is an

integrated C and C sben re-implementation of tree learning routines such as CART, C4, and various

MDL and Bayesian variations. The package includes routines for experiment control, interactive

operation, and analysis of tree building. The manual introduces the system and its many options,

gives a basic review of tree learning, contains a guide to the literature and a glossary, lists the

manual pages for the routines, and instructions on installation.

Contents

Preface

2

Getting Started 1-1

1.1 About This Manual 1-2

1.2 Decision Trees 1-3

1.3 IND - An Overview 1-4

1.4 A Session with mkbld, mktree, and tprint 1-5

1.4.1 Creating the Training Set 1-5

1.4.2 Building a Tree 1-7

1.4.3 A F_rst Look at Controlling Tree Generation 1-9

A Tour of IND 2-1

2.1 Introduction .. 2-2

2.2 Option Passing in IND 2-2

2.3 Building Trees 2-3

2.3.1 Splitting Criteria 2-3

2.3.2 Stopping Rule Options 2-3

2.3.3 Pruning Options 2-4

2.3.4 Prior Options 2-4

2.3.5 User Override Mode 2-4

Miscellaneous Options 2-5

2.4.1 Data Handling Options 2-5

2.4.2 Tree Evahation Options 2-6

2.4.3 Classifying a New Example 2-6

2.4.4 Tree Display Options 2-6

2.4.5 Tree Editing 2-7

2.4.6 Handling Attributes with Unknown Values 2-8

2.4.7 Echoing Shell Scripts 2-8

2.4.8 Comparative Trials 2-8

Standard IND Option Sets 2-9

2.5.1 2-9

2.5.2 2-9

2.5.3 2-9

2.5.4 2-10

2.5.5 2-I0

2.4

2.5

CART Style

C4 Style

Minimum Encoding Style

Bayes

Option Trees

CONTENTS

2.6 Choosing Options 2-II

2.6.1 Prior knowledge 2-11

2.6.2 Benchmark methods 2-11

2.6.3 Appropriateness of Trees 2-11

2.6.4 Parsimony or UnderstsncUbility 2-11

3 Learning Tree Classifiers 3-1

3.1 Introduction .. 3-2

3.2 Introduction to Learning Classifiers 3-2

3.3 Trees .. 3-2

3.3.1 Recursive partitioning 3-3

3.3.2 Stopping ru/es 3-4

3.3.3 Splitting rules 3-4

3.3.4 Pruning methods 3-6

3.3.5 Handling Unknown Attribute Values 3-9

3.3.6 An Example of Growing a Tree 3-10

3.4 A Guide to the Literature 3-12

3.4.1 Extended Representations 3-13

3.4.2 Extended Search and A/tern,_te Growing Methods 3-13

3.4.3 Incremental Growing Methods 3-14

3.4.4 Theoretical Developments 3-14

3.4.5 Support for the Knowledge Engineer 3-14

4 IND Man Pages 4-1

4.1 Introduction .. 4-2

4.2 The Man Pages 4-2

4.2.1 attributes(I) 4-3

4.2.2 bclass(1) 4-5

4.2.3 bgen(1) 4-6

4.2.4 mkbld(1) 4-7

4.2.5 mkcl(1) 4-8

4.2.6 mkclean(1) 4-9

4.2.7 mktree(1) 4-10

4.2.8 sample(1) 4-12

4.2.9 tchar(1) 4-13

4.2.10 tc]ass(1) 4-15

4.2.11 tgen(1) 4-17

4.2.12 tgendta(1) 4-20

4.2.13 thead(1) 4-21

4.2.14 tprint(1) 4-22

4.2.15 tprune(1) 4-24

4.2.16 ttest(1) 4-26

4.2.17 xgraph(1) 4-28

CONTENTS

5 Insta]Hng IND 5-1
5.1 Introduction .. 5-2

5.2 Overview of the IND Directory 5-2

5.3 InstsJ]ing the Code 5-2

5.4 Warnings 5-3• • • ° , • , • ° , • ° • • • • • • • • • ° • • • • • o ° ° • . • ° ° • •

5.5 Planned Extensions 5-3

5.6 Contact and Reporting Your Use of IND 5-4

5 Bibliography 5-4

A. Glossary A- 1

B Copyright B-1

CONTENTS

Preface

IND is a collection of C programs and C shell scripts for generating, testing, and using decision

trees, class probability trees, and Bayes classifiers. IND is research software and is currently under

development. First time users or those interested in obtaining the package should see the companion

document "About the IND Tree Package" by Wray Buntine. Further copies of this manual or other

related technical reports can be obtained by contacting:

•mail:

post:
indOkronos.arc.nasa.gov

IND Tree Package

C/O Wray Buntine, RIACS and Code FIA

Mail Stop 269-2
NASA Ames Research Center

Mofl'ett Field, CA, 94035

The package comes with NO WARRANTY ofany kind,and may not be distributedtoany other

party.The copyrightforthe package isthe standard RIACS softwarecopyrightand isdescribedin

Appendix B.

IND was builton top ofan earlysuiteofsoftwaredevelopedat BassetDepartment ofComputer

Science at Sydney University by a lineage of students of Jason Catlett: David Harper, Murray Dean,

David Muller and Chris Carter, and others. Some early "man" entries and bits and pieces of the

code where also done by Chris Carter while at the University of Technology, Sydney. The only

program or file that remains largely intact is IND/Util/sample. All others have been recoded and

restructured to a large deg_,e, except for the "symbol" structure in SYM.h and its associated

routines. We are particularly indebted to Jason Catlett's students for creating a foundation upon

which to build, and to Ross Quinlan for providing the environment and ideas on which the package
isbased.

IND was developed by Wrsy Buntine,whileat S.O.C.S.,UniversityofTechnology Sydney ('88-

'89),Turing Institute('89)and StrathclydeUniversityin Glasgow ('89),and code FIA, NASA

Ames Research Center and RIACS ('90).More recently('91),Rich Caruana helped make the

package more presentablewhile on a summer internshipat NASA-Ames Research Center on leave

from Carnegie Mellon University.

Naturally,any deficienciesinthe currentsoftwarewillbecome our responsibility,not the earlier

contributors.Thanks to the variousorganizationsabove for supportingWray Buntine'sresearch

and to the San Jose State University/NASA-Ames Research Center Research and Development

Program for supportingRich Caruana'sinternship.Thanks to RIACS and NASA Ames Research

Center formaking the package available.

PREFACE

Chapter 1

Getting Started

1-1

1-2 CHAPTER 1. GETTING STARTED

1.1 About This Manual

This manual is an introduction and reference manual for IND. IND is a collection of program-us for

generating, testing, and using classification trees and Bayes classifiers. For those not familiar with

the tree literature, this manual contains an introduction to tree learning methods, a glossary, and

a comprehensive bibliography. For those wishing to install the system, details are given in the last
chapter, and copyright details in Appendix B.

Chapter 1 introduces first-time users to the IND software and documentation. The introduction

includes an overview of this manual, a cmmal introduction to decision trees, a survey of the IND

software, and a few sample sessions where decision trees for the hypothyroid data set are built and

tested using IND. By the way, trees come in two forms, decision trees and cla.vs probability trees,

where the latter replace "decisions" at the leaves with "class probabilities".

Chapter 2 surveys the more important IND runtime options. It demonstrates many of the

standard IND option sets typically used when generating certain styles of trees (e.g. Bayes Trees,

ID3 Trees, CART Trees). For those who are new to trees, this chapter provides useful suggestions

about different ways of generating and testing trees using IND. For those who are already familiar

with tree analysis, this section win quickly familiarize yon with IND's options and show you how

to make IND do the standard tricks. This section also provides advice on how to choose between

the different methods avaxqable for the problem yon are considering.

Chapter 3 is a technical introduction to decision tree methods. It is an expanded version of

"An Introduction to Recursive Partitioning" written by Wray Buntine while at the Turing Institute.

Those who are less experienced will find that this section provides a concise summary of decision tree

methods and introduces much of the notation and many of the basic concepts required for informed

use of IND. Subsequent sections of this document, as well as the man pages for IND, assume that
the user is familiar with some of the methods discussed in the section. The experienced decision

tree builder may wish to browse through the literature guide at the end. This has been fairly

hastely thrown together so new entries are always welcome.

Chapter 4 is a copy of the man pages for IND routines. Note that it is not essential that the user

be familiar with all routines for which there are man pages. The beginning of Chapter 4 suggests

which man pages are likely to be useful to the typical user. Some other man pages are included

for completeness, but probably will only be needed by users who intend to modify the software to
make it do new tricks.

Chapter 5 contains instructions for installing IND on your machine. If IND has already been

installed for yon by someone else, and if you do not intend to modify IND to make it do new tricks

(or fix an old trick), you can safely ignore this section. Otherwise, we suggest installing IND before

reading beyond section 1.4, so that yon can work through the example. This chapter also contains

a brief description of where different things are located in the IND subdirectories.

Appendix A is a glossary of the terms used throughout this documentation and in the IND

man pages. It may also be useful to those who have read Chapter 3, or are familiar with other tree

literature, but need to reference the meaning of some terms.

The bibliography included in this manual is fairly extensive. Since IND is a research software

package (as opposed to a commercial software package) and is not tutorial, some users may have to

consult some of these references in order to fully understand some of the methods available within

IND and their motivations or limitations. For instance, some of IND's innovative features, the

Bayesian and MDL components, are based on work described in [7, 5].

DECISION TREES

Decision Trees

1-3

Decision treesare classifiersthat representtheirclassificationknowledge in "tree"form. Each

interiornode of a decisiontreeisa teston an attribute.Satisfyingthat testcausesthe instance

being classifiedto take one branch out of thatnode, failingthe testcausesthe instanceto take

the other branch. A decisiontreeisused to classifyan instanceby startingat the root node of

the decisiontreeand followingthe path the attributetestsdictateuntila leafnode isencountered.

Each leafnode in a decisiontreeisa decision,i.e.,representsa classification.An instancethat

ends up at some particularleafnode isclassifiedwith the classassignedto thatleafnode.

For example, a decisiontreefardiagnosingthe flu(seefigure1.1)might have leafnodes labeled

FLU and NO..FLU and might use attributetests(on interiornodes),such as,TEMP < 100F?,

8tomach_,paet?, and headache?. Each teston an attributecausesthe particularinstancebeing

classified(inthiscase an individualwith a setofsymptoms) to followone ofthe branches leaving

that node. Eventually,sincethe decisiontreehas finitedepth, the instancewillend up in a leaf

node labeledeitherFLU or NO_FLU (There may be many leafnodes with the same label.).If

the instanceends up in one of the leafnodes labeledFLU, then the decision,of the decisiontree

for thatinstance,isthat the individualdoesindeedhave the flu.

TEMP < 100F?_

/ < headache?

Figure I.I: A simple decision tree far diagnosing the flu

A second kind of tree is a class probability tree. This has a vector of class probabilities at each

leaf instead of a decision. Far instance, the top left leaf in figure 1.1 has the decision no NO_FLU.

This could instead be the probability vector (0.77, 0, 23) (notice the elements in the vector sum to

1.0) which would represent "the probability of NO_FLU is 0.77, the probability of FLU is 0.23".

This kind of tree is explained further in Section 3.3.

When we refer to "trees", we usually mean decision trees, class probability trees, or both,

whichever is more appropriate.

IND - An Overview

CHAPTER 1. GETTING STARTED

IND is a collection of programs for generating, testing, and using trees. IND provides a potentially
bewildering number of options to allow the user to precisely control how data is interpreted, how

trees are grown and tested, and how results are displayed. This section is a simple overview of IND.

It is intended to introduce the new user to the IND programs and to show the typical (and usually

simplest) ways to run IND. More detailed information about IND can be found in the man pages
for the various routines. The next chapter provides short-cuts for users who would like to use IND

in specific modes.

IND consists of four basic kinds of routines: data manipulation routines, tree generation rou-

tines, tree testing routines, and tree display routines. The data manipulation routines are used to

partition a single large data set into smaller training and test sets. The generation routines are

used to build classifiers. The test routines are used to evaluate classifiers and to classify data using
a classifier. And the display routines are used to display classifiers in various formats.

IND contains many low-level C programs that implement the basic services and a few higher-

level shell scripts that encapsulate these basic services into a more user-friendly package. It is

possible to use IND by directly calling the low-level manipulation, generation, test, and display
programs, but this is rarely necessary; the higher-level control scripts are the correct level of

abstraction for many applications of IND.

The basic control scripts in IND are mkbld, mktree, and another useful C program is tprint.

There are a few even higher-level scripts that can run these basic control scripts for you, but

understanding the basic scripts is important to using IND so we begin by introducing them.

mkbld is a control script that takes a data set and splits it into a training and test set. The

training set is used for building the tree, and the test set is used for evaluating the performance of

the tree. :nkbld is smart enough to automatically uncompress and recompress data sets (or even

build the ,_ata set using shell scripts) and allows the user to specify the sizes of the training and

test set and the sampling method to use when generating them.

mktree is a control script that takes a training set and builds trees for it. mktree builds

trees by calling an assortment of other programs that actually build the trees ("tgen"), prune them

("tprune"), and test them (aclass"). mktree has many different options that control what methods

are used to build, prune, and evaluate the trees. Tree building options include things like what

the maximum tree depth should be, and what splitting rule to use (e.g., Bayes, information-gain,

etc.). Tree pruning options include depth-bounded pruning with cost-complexity, pessimistic or

minimum errors pruning. Tree testing options allow the user to select from several different kinds

of performance measures and, for example, to control whether or not instances are classified by

utility or by maximum likelihood, mktree passes many of the options specified to it directly to

the programs it runs for you, so using the full power of mktree does require familiarity with the

tgen, tprune, and tclass programs.

tprlnt takes a tree built by mktree and displays various kinds of information about it. For

example, tprint can display the final probabilities associated with each leaf node, it can display

the counts for each class at leaf nodes as well as at interior nodes, and it can even handle attributes

with unknown values in any of several different ways when accumulating these counts. Of course,

tprint can also pretty-print a tree in a human-readable format on a terminal.

1.4. A SESSION WITH MKBLD, MKTREE, AND TPRINT I-5

1.4 A Session with mkbld, mktree, and tprint

In this section we demonstrate the use of IND to build and test a tree for hypothyroidism. The

data set we use is the now classic hypothyroid database appearing in [33].

1.4.1 Creating the Training Set

The hypothyroid data set is contained in two files in the subdirectory IND/Data/thyroid, the
attribute_file and the data_file. The attribute_file, hypo.attr, contains a description of the features of

the data set and any special instructions on how to interpret them. For example, hypo.attr specifies

that age is a real-valued attribute on the interval [0,100] and that sex is an ordinal-valued attribute

with values M or F. The attribute file, also specifies that the classes we are trying to predict are

primary_hypothyroid, secondary_hypothyroid, compensated_hypothyroid, and negative (i.e., no

hypothyroidism). The format of the attribute file is described in the man page attrib_tesCI).

The file hypo.dta contains the hypo data set itself. Each line in this file is a single instance from

the domain, coded in the language defined by the attribute file. The data set is compressed (using
the UNIX "compress" command) in order to save space. Compressing data sets is optional.

Since each line in hypo.dta is an example from the domain, we can count the number of examples

by passing an uncompressed copy of it to we, the UNIX wordcount program:

% zcat hypo.dta I wc

3772 113160 306174

From this we can tell that there are 3,772 examples in the hypo data set. The last few examples
look like this:

% zcat hypo.dta [tail

negative 21 F f f f f t f f f f f

negative 62 If f f f

prtNary_hypothyroid

negative 73 F f f f

negative 76 !(f f f

negative 68 If f f f

negative 71 M f f f

negative 64 F 1; _

negative 50 N f f f

negative 43 F f f

f t f _ t 0.2 t 2.5 t 108 t 1.13 t 96 f ? STMW

f _ f _ f _ f _ _ _ _ t 0.015 t 2.7 t 122 t 0.83 t 147 f ? other

T8 F f f f f f f f t _ f f f _ f t 26 t 0.9 t 50 t 0.84 t 60 f ? SVZ

f f f _ f f f f f _ f t 0.96 t 2.5 t 119 t 1.04 t 114 f ? other

fffffff

fffffff

fffff_f

_ffffff

fffffff

ff_ffff

_ _ _ _ t 0.69 t 2.3 t 138 t 1.04 t 133 f ? SVZ

f f f f t 4.8 t 2.1t 107 t 0.99 t 108 f ? other

f f f f t 0.1t 1.4 t 120 t 0.87 t 138 f ? other

f f f f t 0.1f ? t 123 t 0.74 t 166 f ? other

f f f f t 0.4 t 2.8 t 94 t 0.88 t 106 f ? SVHC

f f f f t 2 t 1.8 t 121 t 0.94 t 129 f ? SVHC

Note that the first entry for each example is the classification for this example. Only one of these

examples has primary hypothyroidism. The rest of the entries on each line are the values of the

attributes in the sequence defined in the hypo.attrfile. The fields with "?" mean the corresponding

attribute value is missing. The attribute file contains the following:

% cat hypo.attr
class:

age:

sex:

on_thyroxine:

compensated_hypothyroid,negative,

prt=ary_hypothyroid,secondary_hypothyroid.
cont 0..100.

F,M.

f,t.

1-6 CHAPTER 1. GETTING STARTED

query_on_thyroxine: f, 1:.

on_ant ithyroid_aedicat ion:

sick: "_,t.

pregnant : f ,t.

thyroid_surgery: f, t.

I131_treatment: f,t.

query_hypothyroid: f, t.

query_hyperthyroid: f, t.

lithium: _,t.

goitre: f,t.

tumor: _t_.

hypopitui_ary: f,t.

psych: f,t.

TSH_measured: f,_.

TSH: cont 0..600.

T3_measured: f,t.

T3: cont 0..100.

TT4_measured: _,t.

TT4: cont 0..500.

T4_measured: f,t.

T4: cont 0..3.

FTZ_measured: f,_.

FTZ: cont 0..400.

TBG_measured: f,t.

TBG: cont 0..100.

referral_source:

:_,t.

STI(W,SVHC,SVHD,SVI,b_ST,other.

Now we see that the first example listed above has an age of 21, is female, is not on thyroxine,

etc. For more details about the format of the attribute file, see the man page attviDutes(l).

Now that we are casually familiar with the format of the attribute file and the data file, let's

build a tree. First, let's split the data set into a training set and a test set using mkbld. The
training set will be used to build the tree, and the test set will be used to test it. Let's use 2000

examples for the training set and let the rest fall in the test set:

Z =kbld hypo 2000
678757306

wc hypo.bld

2000 60000 162371 hypo.bld

wc hypo.ts_

1772 53160 143803 hypo._s_

As we can see,2000 examples went intothe filehypo.bhi,and the remaining 1772 ended up in

h_/po.tst.Note that mkbld sampled the originaldata base of examples, itdid not justcopy the

first2000 examples to one fileand the last1772 to the other.

The number mkbld printedout was therandom seeditused forthe random number generator

that controlledthe sampling. If we rerun mkbld and giveitthisseed (as an optionalargument),

itwillperform an identicalpartitioning.This allowsus to exactlyreplicatean experiment.Ifyou

ran mkbld as instructedabove (i.e.,without specifyinga seed),then mkbld probably returned a

1.4. A SESSION WITH MKBLD, MKTREE, AND TPRINT i-7

different seed than the one shown above and the sampling will be somewhat different. If you wish

to exactly replicate the example described here, rerun mkbld specifying the seed used above:

_, lakbld hypo 2000 678757308

678757306

1.4.2 Building a Tree

In the lastsectionwe createda trainingfile(the ".bld"file)and a testfile(the ".tst").Now let's

build a tree using mktree. For now, weq.1 ignoremktree's abilityto automatically prune the tree

itgeneratesand itsabilityto automaticallyrun the testsetthrough the tree.That iswe willjust

tellmktree tobuildthe tree.Let'sbuildthe treeusingthe GIN] index ofdiversityas the splitting

criterion(it'sok ifyou don't know what thatis,chapter 3 explainsit)and limitthe depth of the
induced treeto four.

Y, mktree -0 "-d4 -g" hypo

The a-O"argument tomktree says thatthe arguments thatfollowitinquotesshouldbe passed

directlyto tgen, the program that actuallygeneratesthe tree. The finalargument to mktree,

hypo,isthe stem name. mktree assumes thatfilesnamed stem.stirand stem.bldexistand creates

a filecalledstem.treethat containsthe induced tree.

Note that mktree did not printanything.The resultsofitslabor are in the ".treec"file.To

see the tree use tprlnt:

Z tprtnt hypo.attr hypo.treec
TSH < 6.05:

J TT4 < 48.$:

[J TSH < 3.5: negative

[[TSH >: 3.8: secondary_hypothyroid

J TT4 >= 48.6: negative
TSH >= 6.05:

FTI < 63:

age < 17.5: negative

age >: 17.5:

l age < 84.S:
[[T3 < 2.68: prinary_hypothyroid

[J '1'3 >8 2.65: negative

[age >ffi 84.5: negative

FTI >: 63:

on_thyroxine ffi _:

[T4 < 1.675:

[[FTI < 183: colrpensated_hypothyroid

[J FTI >: 183: negative

[T4 >: 1.675: negative

on_thyroxine : t: negative

As commanded, mktree has limited the depth of the tree to four. The root tests to see if TSH

is less than 6.05 or not. If it is, the next test is to see if TT4 is less than 48.5. If this is so, then

the next test is to see of TSH is below 3.5. If all three of these tests are true for an example, then

1-8 CHAPTER 1. GETT/NG STARTED

that example will be classified as negative. Other tests used in the tree are on age, FT/, T4, and
whether or not the patient was using thyroxine.

So now let's prune this tree using pessimistic pruning and, after the pruning is complete, convert
the class counts at each leaf to probabilities (Converting leaf counts to probabilities is needed for

many subsequent stages of processing, e.g., for tree smoothing and even to compute the statistical

summaries of tree performance. Currently, tprune is where this conversion is done, so you will

usually want to "prune" a tree after growing it, even if you do not specify pruning options that

actually reduce the size of the tree.). Rather than using tprune to prune the tree, let's rerun

mktree and specify the pruning options that will be passed to tprune when mktree calls it for
us"

% mktreo -o "-d4 _g,, _p "-b -e" hypo

% tprint hypo.attr hypo.tree

TSH < 6.05: negative
TSH >= 6.05:

J FTT < 63: prizary_hypothyroid
J FTI >ffi 63:

I J on_thyroxine ffi f: compensated_hypothyroid

I J on_thyroxine = t: negative

Notice that the tprint command this time printed the tree in "hypo.tree" rather than in

"hypo.treec'. The distinction is hnportant. The file "hypo.treec" stores the ori_ual unpruned tree

and has example counts rather than probabilities stored at its leaves. Pruning converts t_s tree to

the second tree stored in "hypo.tree" which we have printed in this case.

Pessimistic pruning n_y be well named: it pruned most of the tree! But we don't yet know

which tree, the original unpruned tree or the new pruned tree, is l_ely to perform better on future

examples drawn from this domain. So let's test the trees on the data we held aside specifically for

this purpose. Again, rather than use telass, the routine that actually performs the testing, let's

reinstruct mktree to not only build and prune the tree, but to also to test it.

% nktree -o "-d4 -g" -p "-b" -c "-8" hypo

Percentage accuracy for tree 1 = 98.8149 +/- 0.257073

Mean square error for tree 1 = 0.0208581

Expected accuracy for tree 1 ffi 98.1178

%mktreo -o "-d4 -g" -p "-b -o" -c "-e" hypo

Percentage accuracy for tree 1 = 98.9278 +/- 0.244666

Mean square error for tree 1 = 0.020488

Expected accuracy for tree 1 • 98.0391

Note that in the first run of mktree we specified only that the leaf nodes be converted to

probabilities, but not that pessimistic pruning be done. In the second run we did specify pessimistic

pruning. Looking at the performance summary for the two trees, we see that pessimistic pruning

did not apparently injure the performance of the tree when tested on the 1772 examples in the test

set. In fact, it may have improved the performance somewhat. This is not surprising, trees that

are not pruned often overfit the training data.

For those of you not running these examples as you read, a Spare 1 takes about 15 seconds

to generate and test these trees, most of this time being spent in the generation stage. On some

1.4. A SESSION W/TH MKBLD, MKTREE, AND TPRINT 1-9

problems, the testing stage can be the most time-consuming. Obviously, regenerating the tree each

time we change a pruning option is not very efficient. V_y don't we first generate the tree, then

prune it (sending the pruned tree to a separate fi]e so that the unpruned tree is still there to be

tested) and then, test the two trees? This is, in fact, easy to do using the routines tgen, tprune,

and tclass. And if you have been reading about the options we've been using, you've already

discovered that you must go to the man pages for these routines to know what options to select;

the man page for mktree does not describe them. But typically, when you grow a tree you also

need to prune it and evaluate it, and the ways of doing this are quite stylized. Because of this,

mktree is usually the most convenient level of abstraction for using IND. It might seem a little

awkward at first, but you quic]dy get used to. Moreover, the options used for pruning often depend

on how the tree was generated, and the options used for testing the tree often depend on when it

was generated and pruned, so it does m_e some sense to specify them all at one time.

1.4.3 A First Look at Controlling Tree Generation

Now that you are convinced that mktree is usually easier than separately running tgen, tprune,

and tclass, let's do one last thing with ntktree. Specifically, let's tell ntktree to generate trees of

depth 1, 2, and 3 and see how we]] they perform without subsequent pruning:

mktree -o "-dO -g" -p "-b" -¢ "-s" hypo

Percentage accuracy for tree ! = 98.0339 +/- 0.51608

Mean square error for tree 1 = 0.0627282

Expected accuracy for tree 1 = 95.2003

tprtnt hypo.attr hypo.tree

TSH < 6.05: negative

TSH >= 6.05: compensated_hypothyroid

mXtree -o "-dl -g" -p "-b" -c "-I" hypo

Percentage accuracy for tree 1 = 97.5169 +/- 0.36966

Mean square error for tree I = 0.0371818

Expected accuracy for tree I = 96.8403

% tprtnt hypo.a_tr hypo.tree
TSH < 6.05:

[TT4 < 48.8: negative

[TT4 >= 48.8: negative
TSH >= 6.05:

[FTI < 63: prt_mry_hypothyrotd

[FTI >= 63: compensated_hypothyroid

mktree -o "-d2 -g" -p "-b" -c "-s" hypo

Percentage accuracy for tree I = 98.702 +/- 0.268883

Mean square error for tree I = 0.022251

Expected accuracy for tree I = 97.9641

tprtnt hypo.attr hypo.tree

TSH < 6.05:

1-10 CHAPTER 1. GETTING STARTED

[TT4 < 48.5:

I [TSH < 3.5: negative

[[TSH >= 3.5: secondary_hypothyroid

[TT4 >= 48.5: negative
TSH >= 6.05:

FTZ < 83:

[ago < 17.5: negative

I ago >8 17.8: prinary_hypo_hyrotd
FTZ >= 63:

I on_thyrox£uo = f: compensa_ed_hypothyrotd

I on_thTJrOXtnO = t: negative

Obviously, we lose considerable performance by forcing the tree to be only one or two tests deep.

Interestingly, the tree that is three tests deep performs worse than the smaller tree that resulted

from pessimistic pruning. This is not an anomaly. Pruning a tree that has "overfit" the data often

yields a better tree than simply restricting tree depth to try to prevent overfitting; pruning does

not have to return trees of uniform depth and it is safer to eliminate a branch after it has proven

ineffective, than it is to not expand some node before knowing if subsequent tests in the branch

might make that branch useful. Of course it is not a simple matter to determine if a branch is

"ineffeetive"; with the sometimes small amount of data appearing in the branch this is a complex

statistical problem. Prior knowledge also comes into play. For instance, if you are sure that typical

accuracy in prediction cannot be above 70_ no matter which example is observed, and many leaves

in the current branch have an accuracy of 90% (not uncommon if the tree was grown to fit the

data) then it would make sense to do some heavy pruning.

¢q

I,,--I

<

T_

&

2-2 CHAPTER 2. A TOUR OF IND

2.1 Introduction

Chapter 1 concluded with a session where we used IND to generate, prune, and test a few simple

trees. In this chapter we flex IND's muscles a bit more. This chapter discusses IND options in

detail, presents a series of IND demonstration runs, and presents a few standard sets of options

that allow IND to simulate some aspects of other tree induction programs, such as ID3 or CART.

This is the chapter that shows what IND can do. We begin by discussing option passing in IND.

Then we discuss different kinds of IND options in more detail and, where helpful, demonstrate those

options through sample runs with the hypothyroid database. We present a few different standard

option sets that make IND behave similar to other tree induction programs. Finally we review

some factors to consider when applying IND to a problem of your own.

2.2 Option Passing in IND

As we saw in Chapter I, she]/scripts such as mktree automatically run lower-level IND routines

like tgen, tprune, and tclass for you. mktree passes some of the runtime arguments given to
it directly to these lower-level routines. The options to be passed to these routines are specified

with three flags: -o, -p, and -c. These flags introduce the options for tgen, tprune, and tclass,

respectively. The options you wish to pass follow these flags, usually as a string enclosed in quotes.
It is important to include "-" signs in these option strings. An example will make this clearer.

Suppose we wish to run ink-tree, teUing it to use tgen options "-g', "-U 3", and "-d 4", to use

tprune options "-b" and "-e', and to use tclass options "-g', "-p", and "-s'. While we're at it,
let's also specify the mktree options "-a" and "-D'. This could be specified in several different
ways, two of which are:

mktroo -a -D -o "-g -U 3 -d 4" -p "-b -e" -c "-g -p -s" hypo

mktree -a -D -o "-gU3 -d4" -p -be -c -gps hypo

Notice that in the second, options without arguments are strung together. The following ways,
however, are incorrect:

mktree -aD -o "-g -U 3 -d 4" -p "-b -e" -c "-gp8" hypo

mktree -a -D -o "-gUS-d4" -p "-be" -c "-gps" hypo

The first is incorrect because of "-aD': neither mkbld, mktree or ttest can string option argu-

ments together. The second is incorrect because the option argument to "-o" has no space after
the "3".

The option -D tells mktree display the commands it executes. This option is supported by

most IND shell scripts and is very handy when debugging or when learning how to use IND.

Running either of the correct commands invokes the following sequence of commands:

lt_Lt datasize 121

liait stacksize 12m

lt_t.t cputtle 2000

tgen -g -U 3 -d 4 hypo.attr hypo.bld ./hypo.treec
tprune -b -e hypo.attr ./hypo.treec

av ./hypo.treec.p ./hypo.tree

tchar hypo. attr ./hypo.tree ./hypo. ctr

tclass -g -p -s hypo.attr ./hypo.tree hypo.tst

2.3. BUILDING TREES 2-3

The limit commands restrict how long tgen can run and how much memory it can use. tgen
will quit gracefu]]y when any of these limits are exceeded. Note that if you run either form of the

mktree command above, you will see a lot of shell execution detail that has been deleted from the

execution sequence printed above. This "sanitization" was done only to make it easier to see what

IND commands raktree is executing.

2.3 Building Trees

IND is capable of building and using several different kinds of trees. The basic tree is a conventional

decision tree using perhaps the GINI index of diversity as its splitting rule (i.e. , it uses the GINI

to determine which test to install when expanding a node). But IND can also generate other kinds

of trees. For example, IND can use a Bayes splitting rule instead of the GINI index of diversity

and, thereby, build Bayes trees. IND can generate option trees which are a representation of many

alternative trees in an and-or structure, see Section 2.5.5. This section briefly examines the various

types of trees available in IND.

2.3.1 Splitting Criteria

IND can use several different criteria when evaluating the quality of different tests. The available

options include the GINI index of diversity ("-g"), the Bayes splitting rule ("-t"), and information

gain (the default).

Lookahead during splitting is invoked with the "-B" option to tgen. This starts a depth-

bounded beam search to look for the best node. You should only do this with the Bayes splitting

rule. For instance, "-tB3,5,0.00001" does 3-ply lookahead with a beam width of 5, and at each

search point only expanding nodes within a factor 0.00001 of the best.

IND allows multi-valued attributes to be binary encoded with the "-$2" option in tgen. This

means if a multi-valued attribute A has 6 values, 0,1,2,3,4,5, then instead of producing a test A?

on the attribute with 6 outcomes, depending on the value of A, allow one of 6 tests of the form

A -- 3?, with outcomes true and false.

IND also allows subsetting of mnlti-valued attributes with the "-SO" option in tgen. This

means if a multi-valued attribute A has 6 values, 0,1,2,3,4,5, then instead of producing a test A?

on the attribute with 6 outcomes, depending on the value of A, allow one of many tests of the form

A E {1, 3, 5} or A E {0, 5} with outcomes true and fa/se.

2.3.2 Stopping Rule Options

tgen and, therefore mktree, can be told to limit tree depth to a certain size. This is done with

tgen's "-d depth" option. Note that a depth of zero means that the tree has only one attribute

test (at the root node), a depth of one means that there is a subsequent level of attribute tests just

below the root node test, etc. See section 1.4 for an example of building trees with different depth
bounds.

Another stoppingruleistgen's "-srain"option.A node with fewerexamples isautomatically

made a leaf.

Various "pre-pruning" stopping rules can also be programmed using tgen's "-J" option with
the lea[-Jact factor, when growing Bayes trees. To do pre-pruning of Bayes trees use:

2-4 CHAPTER 2. A TOUR OF IND

mkl;ree -o "-tJI,0.005,0.75,1.0" -p -b -c -slvg hypo

The factors "0.005,0.75" are search parameters and not important in this case. The 1 in "-Jl" says

we are doing Bayes trees and not option trees; option trees have multiple (optional) tests. The

pre-pruning factor here is the 1.0. Use a factor of 1.0 to stop when the best test is as good as the

leaf, a smaller factor is more cautious in stopping, a larger factor pre-prunes more severely.

2.3.3 Pruning Options

Cost-complexity pruning, for various reasons, is done in tgen, see Section 2.5.1, but can also be

done with the U-c" and u-V" options in tprune. Pessimistic pruning is done with the "-e" option

to tprune and minlmllm errors pruning with the "-Mn option.

Other tree operations which perform the same service as pruning are smoothing, the "-b" option

to tprune, which averages over pruned subtrees, and choosing the maximum a posterior tree using
the "-B" option to tprune. In general the U-b" option should give better class probability estimates

but can be slower. These methods should be used along with careful use of the prior options. See
Section 2.5.4, 2.5.3 and 2.6.1.

2.3.4 Prior Options

IND can be primed to handle three different kinds of prior knowledge when growing trees.

Structural constraints. The contexts feature (see the man entry attributes(I)) allows structural
constraints to be specified on the forms of trees that can be built.

Preference for simpler treesz Typically you might have expectations such as: there are many

irrelevant attributes; all attributes give some guide as to the class; a small classifier should

perform quite well, etc. In these cases you should set the "-P" option carefully.

Typical prediction accuracies- What sort of predictions do you expect to make about class?

In some cases you know accurate prediction is very difiicttlt, in other's accurate prediction
should be quite feasible. The "-A" option should be used here.

Without use of the u-P" option, you are saying ape/oe that all trees are equally likely. This means

you do not believe there are many irrelevant attributes, and in fact you believe most attributes

contribute somehow to the clam. Using u-P-0.693,-0.693 _ for a binary tree corresponds to saying

that adding a new test instead of a leaf makes the resultant tree 4 times less likely. Using "-P0,-

0.693" for a binary tree corresponds to saying that a tree with 6 leaves is as twice as likely apeior

as a tree with 7 leaves, and 8 = 23 times more likely than a tree with 9 leaves. Using "-P-0.693,-

0.693,02" corresponds to an even more extreme preference for smaller trees, as typically done when
"encoding" a tree.

The setting of the o./pha parameter to the tree priors is done with the option "-A alpha". We set

this parameter from our apt/re" expectations about class probabilities at leaf nodes. If you expect

leaf nodes to be higldy accurate in their predictions, then you should use "-AI". This means you

expect to see class probabilities at leaf nodes to be extreme (i.e., one class wig have a probability

near one and all the others wig be low). If you have no expectation that probabigties wig be either

low or high, then you have uniform prior. In this case set "-A2" in the two-class case, "-A4" in

the four-class case, etc. If you expect prediction accuracies to be poor, and to be little changed

2.4. MISCELLANEOUS OPTIONS 2-5

from the base rate class probabilities, then use an even higher value of alpha, such as "-A6" in the

two-class case, or "-A12" in the four-class case, etc.

2.3.5 User Override Mode

A powerful option provided by tgen is "-o', the manual control option. This option allows the user

to manually overide all decisions as each node is expanded and to examine some of the statistical

information tgen has computed for each possible test. This allows you to figure out wh_/tgen

decided to install some particular test at some particular node. More importantly, it also allows

you to control what test to install at particular nodes. In this way you can manually build a tree

using tgen to supply you with relevant statistical information, but reserving the actual decision

making for yourself. The result will be a tree in the syntax appropriate for IND that you have been

able to exert control over. It is possible to use manual control to build entire tree, but this could

be tedious. Fortunately, you have the option of allowing tgen to install the test it would pick at

any node, and even to have tgen complete growing specific subtrees by itself. A sample execution
trace using manual control is shown below.

Y, tgen -or hypo.attr hypo.bld hypo.tree

In_eract? (type 'h' for help): h
Interaction:

'n' = no, continue growing,

's' = no interaction for subtree, 'e' = none for parent _ree.

Modify growing:

'a' = abort growing and save tree so far,

'c' = choose a test at this node, 'f' = force leaf.

Reports on this node:

'1' = list tes_s at node, 'o' = give report on options,

'g' = print gains, 'e' = print error est.

'r' = give full report on current stored tests,

'x' = toggle on/off plotting of attribute gains,

'k' = kill attribute gain graphs.

Reports on _ree:

'q' = prin_ subtree so far, 'p' = print tree so far,

'u' = print statistics on _ree so far,

Interact? (type 'h' for help):

2.4 Miscellaneous Options

2.4.1 Data Handling Options

Most of IND's data handling options apply to mkbld and are fairly well explained in the mkbld

and sample man pages. We'll mention a few of them here just so you know what is available.

By default, mkbld does sampling without replacement (unless the data set is in a ".all" file;

see the man page attributes(I)). With the U-r" option you can tell it to sample with replacement.

With the option "-p m i', mkbld can be told to partition the data set (in the ".dta" file) into

m partitions and to use the i-th such partition as a test set (the ".tat" file) and the remaining m-1

partitions as the training set (the ".bld" file). With the option "-P m i', mkbld will partition

the ".bid" file itself as described. The "-p" option is useful when training on the entire sample

2-6
CHAPTER 2. A TOUR OF IND

and you wish to use a (somewhat slow implementation of) cross-validation to estimate the error.

The second in useful when doing cross-validation error estimation in comparative studies where one
often looks at performance on subsamples.

With the "-c proportion" option, tgen can be told to use proportion of the examples as the

training set and the remaining as the test set for cost-complexity pruning. The default proportion
is 0.7.

2.4.2 Tree Evaluation Options

IND provides a number of performance measures and summm7 statistics to aid in evaluating a
tree.

If you would like to evaluate how a tree performs on a particular test set, then use the "-t"
option in tprint, as we]/as other options you might like. For instance use:

tprlnt -bp -t hypo.tst hypo

This will print out the class probabilities used by the classifier tclass at each leaf, together with a
breakdown of how the test set "hypo.tst" faired on each leaf in the tree.

If you have grown several different trees using different splitting rules, and you would like to

estimate which would be the better tree, then you can use the log. posterior measure printed out

using "thead -s hypo.tree" or "tclass -g ...". This is particularly useful when working with Bayes

trees or option trees which have been grown specifical/y to maximise this measure. If memory or

CPU]hnits were overran during tree growing, then it is important to check the log. posterior to
ensure the tree grown is reasonable by comparison.

Finally trees grown by a specific method (e.g., CART-like or C4-]ike) can be compared by using
the cross-validation or repeated resampllng features of ttest.

2.4.3 Classifying a New Example

Given a new unclassified example, or a set of the same, you may wish to use IND to predict the
class or estimate a class prob&bi]ity vector for the new example. Do this as fonows: place the
example as a single line in a file as you would for the data used to grow a tree. Suppose this is in
"hypo new".

Y. cal_ hypo.new
negative 78 F f f f f f f f 1; f f f f f f t 25 1; 0.9 1; 50 _ 0.84 1; 60 f ? SVI

Notice that the new example has been assigned the (arbitrary) legal class value negative, however,
this is just to prevent tc]ass _om complaining, and will be ignored. Now run

% tclass -dp hypo.al;tr hypo.tree hypo.neg
pr_ary_hypol:hyroid 0.0200611+0.0423564+0.917523+0.0200598

The first field printed is the predicted class. The second set of fields is the class probability vector.
Notice the third probabliity is the largest so tclass has predicted the third class listed in the file

"hypo.attr', which is primary_hypothyroid. If in addition, the "-v" option is used with tclass,

then posterior variances are printed as well. These estimates are usually improved with the "-b"

option to tprune and with careful choice of the prior options when using Bayes trees or option
trees.

2.4. MISCELLANEOUS OPTIONS 2-7

2.4.4 Tree Display Options

Various details of a tree can be printed out. The most important detail to print is a basic decision
tree. Suppose we have just built a tree using the Bayes splitting rule and Bayesian smoothing:

mktree -o -t -p -b hypo

To find out what the basic decision tree generated looks like we can run either of the commands

tprlnt hypo

tprint hypo.attr hypo.tree

This takes the class probability tree stored in the binary file "hypo.tree" and displays the tree as
was done in Section 1.4. The single form requires only specification of the stem. The double form

allows you to display a tree stored in some other file, such as a counts tree "hypo.treec".
The class probability tree would be printed using "tprint -p hypo". If the tree has been

smoothed using the "-b" option in tprune then you should real]y do "tprlnt -bp hypo". The
first form prints the class probabilities at that node. The second form prints the probabl]ities that

would be used during classification (these are different only for a smoothed tree, i.e. one pruned
using tprune -b), but is implemented in a rather slow manner. Print them both out and compare
on a few simple trees. Use "tprint -ipq hypo" to find out how the calculations differ. This would
yield a tree like:

7. Lktree -o -td3 -p -b hypo

7, tprlnt -ipq hypo

0.04092 0.9336 0.02445 0.000998 negative (LO)

TSR < 6.08: 0.0006109 0.9976 0.0006109 0.001222 (L0.999999)

FTI < 338: 0.0006423 0.9981 0.0006423 0.0006423 (L1.4157e-06)

FTI >= 338: 0.0119 0.9524 0.0119 0.02381 (L6.6SOSSe-07)

I query_hypothyroid = f: 0.012$ 0.9625 0.0125 0.0128 (L7.$O643e-07)

I query_hypothyroid = t: 0.128 O.S 0.125 0.28 (L4.41884e-07)

J [sex = F: 0.1667 0.5 0.1667 0.1667 (L3.09088e-07)

[[sex = M: 0.1667 0.3333 0.1667 0.3333 (L3.09088e-07)

TSH >= 6.08: 0.221 0.6442 0.1321 0.00269$ (LO)

TSH_measured = f: 0.004878 0.9854 0.004878 0.004878 (L1)

TSH_neasured = t: 0.4824 0.2235 0.2882 0.008882 (LO)

FTI < 64.8: 0.01887 0.09434 0.8679 0.01887 (L0.434369)

[thyroid_surgery = f: 0.02041 0.06122 0.898 0.02041 (L0.868631)

[thyroid_surgery = _: 0.128 0.378 0.378 0.128 (L0.868631)

FTI >= 64.8: 0.6777 0.281 0.03306 0.008264 (LS.46707e-18)

I on_thyroxine = f: 0.8723 0.07447 0.04258 0.01064 (L1)

[on_thyroxine = t: 0.03226 0.9032 0.03226 0.03226 (L1)

The weights printed in brackets after the "L" indicate the posterior probability that this node

wil/ be a leaf. tprune and tclass use these weights to compute the weighted average of the

class probability vectors along a branch. For instance, examples falling down the branch with test

outcome TSH < 6.05 all use the probability vector for that top node, (0.0006109 0.9976 0.0006109
0.001222), because the weight for that node is 0.999999.

Class counts themselves can be printed using "tprint -c hypo.attr hypo.treec". Notice the class

counts tree "hypo.treec" needs to be used, not the class probahility tree "hypo.tree". If you find

the tree is way too large, then you might Like to print it out only to a fixed depth, such as depth 2

using "tprint -ciD2 hypo". Option "-i" in this case ensures internal nodes will have details printed
as well as the lea/nodes.

2-8 CHAPTER 2. A TOUR OF IND

2.4.5 Tree Editing

You can always edit a grown tree using tchar. To do this, first convert the tree to character format

using tchar. Then delete/change nodes as you see fit. The character format of the tree is explained

in the manual entry tcharC1) and you can see it yourself by printing the same tree using tprint and

comparing. Finally, convert the tree back using tchar -a. If you are working with an unpruned
(counts) tree, then it is safer to use "tchar -ac" as this will check and correct all the intermediate
node counts for you.

2.4.6 Handling Attributes with Unknown Values

Trees have trouble with attributes that sometimes have unknown values: which branch do we send

the example down if the example does not have a value specified for the attribute to be tested

at the test node? Yet in some domains (e.g. , Medical Diagnosis) it is completely impractical to

require that each patient have every test performed. IND does not implement the "surrogate test"
feature of CART to handle missing values, however it does have a number of different ways. The

default is a method that performs fairly well in general if you do not wish to be concerned with the
other variations.

IND can handle examples with unknown attribute values in a number of ways. By default (tgen

-U1) IND sends the example down each branch with the proportion found in the training set at

that node. In effect, IND splits the example into fractional examples, with the larger piece going
down the branch most of the data follows. (This does not pose any conceptual problems because

_ll that is really needed at leaf nodes is the count for each class, and it doesn't matter very much

if that count contains fractional examples.)

Instead of the default, IND can handle unknown attributes by sending the example down the

branch of the tree most commonly taken by other examples. In effect, IND is assuming the missing

attribute value is the same as the most common value seen for that attribute, at that node, in the

training data. IND can also be told to send examples with unknown attribute values down the

branch chosen with probability proportional to that found in the training set at that node. That

is, if 80 percent of the examples at this node with known attribute values take the left branch,
IND will send an example with an unknown attribute value down the left branch 80% of the time.

Alternatively, IND can send the entire example down the branch that most of the examples went

down, or it can send the entire example down a single branch picked with probability equal to that

of the proportion of examples that went down that branch.

IND's way of dealing with unknowns is un/form between the different routines, i.e. , the same

options are available in tgen, tprune, and tclass and they are all specified the same way. See

the man page for tgen to see how to select from the different options. If you are using mktree,

be sure to specify the same option for generating, pruning, and testing unless you really want to
handle unknowns differently in the different phases.

2.4.7 Echoing Shell Scripts

Many IND shell scripts accept option -D. This causes them to echo the shell commands they

execute. This is quite useful for debugging and also for learning more about the IND routines at
the lower level of abstraction.

2.5. STANDARD IND OPTION SETS 2-9

2.4.8 Comparative Trials

IND provides a framework for doing repeatable comparative trials of learning algorithms. The

ttezt C shell script is used for controlling partitioning, tree growing and testing. This outputs

statistical data (accuracies, both actual and predicted, tree size, etc.) to trial files that can be

subsquently processed by a program such as lstat to check for statistical significsnces.

2.5 Standard IND Option Sets

With the appropriate choice of options, IND will simulate a variety of other tree induction methods.

This section presents the options you should use to make IND behave similar to other tree induction

programs such as CART or ID3. The presentation here is terse, only explains options not covered

earlier or that might be nonobvious. This section is valuable, mainly because it tells you what

combination of options to use.

2.5.1 CART Style

Standard CART uses the GINI index of diversity when splitting, and does cost-complexity pruning
and 10-fold cross-validation.

To achieve this with IND, we select GINI and 10-fold cross-validation ("-gC 10"), and use cost-

complexity pruning with the number of standard deviations set to 0.0 (the so-caned 0-SE rule) or

1.0 (the so-caned 1-SE rule). The "-A0.0001" option to tgen cause it to use probability estimates

at nodes that are practically equivalent to CART's simple frequency probability (computed in IND

via the Laplacian formnla using a value for alpha that is so small that it behaves effectively like

0.0 but avoids potential division by 0.0). The tprune option direct tprune to prevent subsequent

Bayesian averaging in tclass by setting the leaf probabilities to 1. Finally, tclasz is told to print
out a summary of performance for the induced tree.

7, CART-like with 0-SE rule and subsetting

mktree -o "-gCl0 -pO -AO.000I -S0" -p -n -c -sl hypo

7, CART-like with 1-SE rule and no subsetting

mktree -o "-gC10 -pl -A0.0001" -p -n -c -sl hypo

2.5.2 C4 Style

The early version of C4 used pessimistic pruning and the information gain splitting rule. Subsetting

("-SO") or binary encoding ("-$2") could be used by tgen if so desired.

7, C4-early with no subsot_ing

mktree -o "-u-A0.0001" -p "-on" -c "-sl" hypo

2.5.3 Minimum Encoding Style

With minimum encoding, we seek to grow the tree that has the "mlnlrrtllm encoding" of tree plus

data given tree (see Section 3.4.4). The implementation in IND for these methods is not quite

standard because cut-points are not encoded according to any of the standard encoding schemes

2-10
CHAPTER 2. A TOUR OF IND

for trees. There is,however, a Bayesian "discounting factor" for cut-points (given in [7]),which

probably has a perfectly acceptable encoding interpretation.

The "-B" option to tprune ensures the singlebest tree will be chosen. The "-AI" option to

tgen uses a prior on probabilitiesat leafnodes that expects extreme probabilitiesat leafnodes but

issymmetric in the sens that no classa a pr/or better than any other. To use a uniform prior (all

leaf class probabilitiesare equally likely),then use "-AC" where C isthe number of classes. See

Section 2.3.4 for other ways of settingthis.

The option "-P-.693,-693,02" to tgen does the real work. This gives leaves and nodes alikea

weight of log 0.5,which means we give a singlebranch a probability of 0.5 of being length 1,of 0.25

of being length 2, of 0.125 of being length 3, etc. This also encodes the tests made at each node

with the "02" flag at the end.

Z basic MDL-llke

mktree -o "-utP-.693,-693,02 -£I" -p -B -c -slvgQ hypo

% MDL-llke wlthnornallsing _he tree prior

nktrso -o "-utIP-.693,-693,02 -II'' -p -B -c -81vgQ hypo

Z MDL-like with unlforn class priors in 2-class case

nktree -o "-utP-.693,-693,02 -12'' -p -B -c -slvgQ hypo

Z MDL-14ke with naxialsing alpha

nktree -o "-utP-.693,-693,02 -A2 -W3,1" -p -B -c -slvgQ hypo

% MDL-l_ke with 3-ply breadth-S 1ookahead

aktree -o "-utP-.693,-693,02 -AI -B3,6" -p -B -c -elvgQ hypo

2.5.4 Bayes

Bayes trees is essentially MDL-like, but with a more flexible interpretation and a more thorough
theoretical basis.

Rather than trying to choose the single best tree, smooth over several trees using the "-b"

option to tprune. Assuming that the "-A" and "-P" options are set reasonably well, this option

almost always improves (on average) class probability estimates and often prediction accuracies.

Also, options to tgen which essentially set prior parameters ("-A" and "-P') should be chosen as

your prior dictates, rather than due to some notion of "the shortest encoding". See Section 2.3.4.

Set alpha as described above. This is critical and effects the performance of the resultant tree

considerably. For instance, if expected errors printed by tclau are significantly higher than actual

error on the test set, then you probably have alpha set to low. If you believe there is considerable

structure in the problem, and that several of the attributes are important when predicting class,

then you probably should not be using the "-P" option because this is quite an extreme aprior

preference for shorter trees. The classic LED problem is a case in point where M1 LEDs are

moderately indicative of the digit so short trees should not be expected aprior.

Z basic Baye8 treos

mktree -o "-utAh" -p -b -c -slvg hypo

Many variationsexists,as for MDL-like. You can include subsetting,lookahead, etc.

2.6. CHOOSING OPTIONS 2-11

2.5.5 Option Trees

Option trees extends Bayes trees by growing many different trees and storing them in a compact

and-or graph structure. It tends to be time consuming and memory consuming, although the

improvement in prediction accuracy can be quite significant [5]. Advice is given in the man entry

tgen(1) and mktree(1) on how to control this. Hopefully, this will be cleaned up in later releases of

IND. In general, use of option trees, where computationally feasible and with an appropriate choice

of prior parameters, should yield the best prediction accurades and class probability estimates for

all the tree methods in IND. On very large problems, option trees are not currently practical.

To use option trees, first try Bayes trees with careful choice of the prior parameters to get

a reference point. Make a note of the log. posterior of the tree grown (see Section 2.4.2) as the
option tree will only be any good if it gets a higher log. posterior. Now add the "-B", "-J" and

"-K" options as explained above. Experiment with different depth bounds and factors to prevent

memory or CPU overruns, as explained in the man entry tgen(1). If the option tree grown has a

log. posterior no better than for the Bayes tree, then the search is causing problems. For very large

data sets (such as the "nettalk" data set) it is not currently realistic to grow option trees.

2.6 Choosing Options

In general, good performance from a tree package with as many options as IND requires careful

choice of the right set of options. This section reviews some basic features and procedures you

should go through when applying IND to a new problem.

One thing this section does not do is explain the general steps you have to go through when

applying a supervised learning system such as IND: steps like gathering the right data, choosing a

set of attributes, enlisting the help of a domain expert, etc. For this kind of general introduction,
see, for instance [33, 18, 22, 10].

2.6.1 Prior knowledge

In most applications, you have some vague prior knowledge that could be of use when building

a tree. IND can be primed to handle three different kinds of prior knowledge as described in

Section 2.3.4. If you have moderate confidence in your setting of these, then Bayes trees or options

trees are the best algorithms for you to try. Try Bayes trees first then experiment with option trees

to see if you can grow a tree with improved log. posterior probability.

2.6.2 Benchmark methods

Both CART and C4 are widely regarded as being good tree algorithms. If your disposition is such

that you would rather use an "accepted" or "standard" benchmark method, then you should choose

the appropriate option set to mimic these.

2.6.3 Appropriateness of Trees

Before choosing a tree method at all, you should consider whether such a method is indeed ap-

propriate. Trees do not represent DNF rules or linear classifiers (for instance, logistic regression

or a perceptron) very well. In general, you may wish to try several different supervised learning

2-12 CHAPTER2. A TOUR OF/ND

methods on your problem and compare them. If classification seems to require weighing up many
different factors, then trees will probably be poor classifiers.

2.6.4 Parsimony or UnderstandibUity

In same cases it is important that the tree built be presentable to a human audience. This means

a far shorter tree is superior even if it has a slightly less prediction accuracy.

To achieve parsimony with CART-like options, use the 1-SE rule instead of the 0-SE rule. To

acheive parsimony with trees smoothed using "tprune -b _, such as when using the MDL options,

Bayes trees or option trees, use the "-P' option to ensure a greater preference for smaller trees.

This means making either the node or leaf weights more negative, or using the 02 flag instead of
no prior flag at all.

Chapter 3

Learning Tree Classifiers

3-1

3-2 CHAPTER 3. LEARNING TREE CLASSIFIERS

3.1 Introduction

This chapter provides a detailed, somewhat mathematical treatment of, methods for learning tree

classifiers or "decision tree induction', as it is popularly called. It is not necessary to fully under-

stand the mathematics in this chapter, but an intuitive understanding of the issues and familiarity

with some of the terminology is required to use IND well. The Bayesian tree learning techniques

that make up much of IND's new features are described elsewhere [7, 5].

Section 3.2 is a brief introduction to the problem of classifier induction. This section does not

survey the area nor discuss the basic issues. Instead, it serves mainly to set the stage for the
learning problem that will be addressed in the subsequent sections.

Section 3.3 reviews the "standard" methods for learning trees. This includes methods such as

Quinlan's 1D3 [29], C4 [33, 31] and CART [3]. This section ends with a sample tree induced for

the noisy LED problem.

Section 3.4 is a brief guide to research in the area of learning trees. The Bayesian tree learning

techniques that make up much of IND's new features are described elsewhere [7, 5].

3.2 Introduction to Learning Classifiers

The learning of classification rules from data is performed as an aid to knowledge acquisition [33]

We typically have an ea-pert who is sufllciently knowledgeable to formulate the problem for us

and is in possession of a training set, a set of examples each belonging to one of a small discrete

set of mutually exclusive and exhaustive classes. Classes might be "positive" and "negative", or

"diseased", "healthy" and "recovering', or similar. The task is to develop a cla,ssification rule to

predict the cla_s of further, unclassified examples.

The problem formulation is as follows: The ezamples are grouped into different types. In a given

problem a particular type of example is usually associated with a particular description in terms of

an expert-supplied language, consisting of 10-30 attributes. Each attribute may be binary ("true"

or "false"), multi-valued or real valued [29].

Quinlan et al. [33] present an induction problem where examples correspond to patients that

attended a laboratory for endocrine analysis. Each patient is described in terms of attributes

such as sex, age, pregnant and on-lithium. Two patients are considered to be of the same type

if they have the same attn%ute values. One binary classification of patients is whether they are

"hypothyroid" or _not hypothyroid', and the corresponding task is to predict this given other

details of the patient. The training set available for this problem is a set of some 4000 recent
medical records.

3.3 Trees

Methods for learning decision trees and class probability trees are found in both machine learning

and applied statistics, and have been under development in some form or another for some two

decades. This chapter reviews a cross section of current methods, develops alternative Bayesian

approaches, and makes a comparison of the two families. One standard technique for building

classification rules from data is the so called recursive partitioning algorithm that forms the basis

of systems such as ID3 [29] and CART [3]. These algorithms build a decision tree such as the one

shown in the left side of Figure 3.1. The tree shown on the left has the classes hypo (hypothyroid)

3.3. TREES

@SH > 200_ _SH > 200_

=

Figure 3.1: A decision tree and a class probability tree from the thyroid application

3-3

and not (not hypothyroid) at the leaves. This tree is referred to as a decision tree because decisions

about class membership are represented at the leaf nodes. This is the kind of tree you see when
you run tprint without any options. Notice that the real valued attributes TSH and FTI have

been incorporated into the tree by making a binary test of the form attribute < cut-point. Also,

the tree need not be binary; if an n-valued attribute is tested at one of the nodes, then the tree

might have, branches coming from the node, one for each value.

In typical problems involving noise, class probabilities are usually given at the leaf nodes in-

stead of class decisions, forming a class probab_ity tree (where each leaf node has a vector of class

probabilities). A corresponding class probability tree is given in the right of Figure 3.1. The leaf

nodes give predicted probabilities for the two classes. This is the kind of tree you see when you run

tprint with the U-p" or U-bp" options. Notice that this tree is a representation for a conditional

probability distribution of class given information higher in the tree. This statistical interpretation

of a tree is used as the basis for a statistical analysis of tree learning [5].

3.3.1 Recursive partitioning

The basic algorithm builds a tree top down using the standard 9reedy search principle; always

take the perceived best move and do not bother searching to find a better one. This results in an

algorithm whose running time is typically linear or log-linear in the number of examples. That is,

given a sample of Ar examples, running time will be O(N) or O(Ar log N) respectively.

As each node is being built the subset of training examples that would belong at that node is

considered. The basic algorithm can be summarised as follows:

1. Find out how many of the training examples belong in each class. We shall refer to this
information as the node statistics.

2. If all training examples belong to a single class, or if some other stopping rule applies, the
tree is a leaf labeled with that class.

3. Otherwise,

(a) select a test using a splitting rule, based on one attribute, with mutually exclusive out-

comes;

-4 "" CHAPTER 3. LEARNING TREE CLASSIFIERS

(b) divide the trs_ning set into subsets, each corresponding to one outcome, and

(c) apply the same procedure to each subset

Sometimes, the resultant tree is modified at the end, for instance by pruning back branches into

leaves [31]. This means there are three important sub-routines for the recurslve partitioning algo-
rithm:

Stopping rulez should the current node be grown or turned into a leaf. IND options are described
in Section 2.3.2.

Splitting rulez which is the best test to make at the current node, IND options are described in
Section 2.3.1.

Pruning rule: how should the tree be pruned after it is grown (sometimes called post-pruning).
IND options are described in Section 2.3.3.

Once constructed, such a decision tree can be used to classify a new unclassified example described

in terms of the same attributes. This is done by tracing through the tree recursively to find in

which leaf the example should belong.

3.3.2 Stopping rules

Stopping rules were originally called pre-pruning rules when people originally tried using statistical

measures to predict if further growing was unnecessary, for instance using the chi-squared statistic.

These are sometimes ineffective because a tree has to be grown out before any advantage is realised.

A Bayesian variation this statistical pre-prunlng is described with the "-J" option in Section 2.3.2.

Most recent algorithms stop growing trees when certain fail-safe conditions are satisfied.

• The node is"pure",itonly containsexamples of the one class.IND always does this.

• The node is greater than a certain depth. This is the a-d" option to tgen.

• The node has lessthan 5 (say)examples, i.e.,any smallerfiguregivesinsignificantesthnates

ofclassprobability.This isthe u-s"optionto tgen.

3.3.3 Splitting rules

A splitting rule typically works as a one-ply lookahead heuristic. For each possible test, build

led nodes at each of the branches and then evaluate the test according to some hewistic such as

ma_Lmum information gain [29]. This approach can be summed up as follows:

1. Based on each test being evaluated, divide the tr_fing set into subsets, each corresponding
to one outcome;

2. construct a leaf node corresponding to each outcome and take the node statistics at that leaf;

3. this yields a complete subtree of depth i at the node being evaluated; finally

4. evaluate the quality of this subtree using some statistical heuristic such as information gain.

3.3. TREES 3-5

test outcome 1

test outcome 2

test outcome T

class cl

nl,1

class c2 ... class cc total

nl,2 • .. nl,c nl,.

11,2,2 . .. n2,c n2,.

nT, l nT,2

total n.,a n.,2
•.. nT,O nT,.

•.. n.,T n.,.

Table 3.1: A Class x Outcome Counting Table

The test that yields the highest evaluation is chosen.

The evaluation process can also be looked at in terms of a table• At each node where a test is

to be selected, the task is first to construct a table counting the number of training examples that
occur in each class for each outcome of the test, and second, to calculate a statistical heuristic on

the table to estimate the quality of the test. A prototypical table built is given in Table 3•1• Here

r_ d corresponds to the number of examples at the node being evaluated that fall in test outcome

i and have class j, n. d is the number that have class j regardless of test outcome, and nl,. is the

number that have test outcome i regardless of class. If we also have to consider the case where the

outcome is unknown for some training examples (because an example does not have a particular

attribute value given), then an additional entry "outcome unknown" needs to be added to the table
before the total row.

For a simple test on a multi-valued attribute, "test outcome i" corresponds to attrlbute-value =

vl, for each distinct value vl of the attribute. For a test constructed as a binary cut-point on

a real valued attribute, the two test outcomes correspond to attribute-value < cut-point and

attribute-value >_ cut-point. Many other test types are possible, but these two are representative

and so are sufficient for our initial investigation.

The statistical tests commonly used are intended to favor splits that yield rows having signifi-

cantly different class distributions. These are mostly similar to the chl-squared statistic for testing

dependence in a contingency table. Some common tests are:

Information galm mAYimi,e the information gained about the class by making the test [29];

this is the default splitting rule in IND:

T T

I(classltest) = _ Pr(outcome i)I(classloutcome i) = - __, n_,_._:.
i=1 i=1 n.,.

6'

Gini index of diversity: minimize the risk involved when making predictions once having made

the test [3]; this splitting rule is invoked in tgen with "-g':

ni'" y_. ni'J 1 ni,j
c(cza,,Itest) -- P,(outcome i) (7(class]outcome i) = - .

n, T=I , hi,/"= i=1 " " "= "

3-6 CHAPTER 3. LEARNING TREE CLASSIFIERS

The correspondence between the two can be seen because they di_er only in the inner terms, which

can be shown to be approximately equal,

hi,./

Notice that if the task is to evaluate which cut-point to use for a real valued attribute (should

we use the cut-point 200 for TSH in Figure 3.1 or some other value), rather than construct

the table afresh for each potential cut point, we can repeatedly update the existing table for a

sequence of adjacent cut points. Two adjacent cut-points and necessary table modifications are

given in Table 3.2. In this table, m_ denotes the number of examples from class cl that have

attribute-value < cut-point

attribute-value >_ cut-point
total

attribute-value < cut-point + 6

attribute-value >_ cut-point + 6
total

class Cl class c=

n1,1 nl,2

Tt2,1 n2,2

n.,1 n.,2

n.,1 n.,l

.o.

..o i

.o.

oo.

..o

class cc total

nl,C nl,.

n2,c n2,.

n.,c n.,.

nl,c + me nl,. + rn.

n2,c -- me nl,. -- rn.

n.,T n..

Table 3.2:Modifying TablesforAdjacent Cut-points

cut-point <_ attribute-value < cut-point + 6, and m. denotes their sum. To drive this modification

process efficiently, the following algorithm is used:

1. Sort the examples according to the value of the real valued attribute.

2. Sequence through the examples in order and use the modification process above to evaluate

each potential cut-point

3.3.4 Pruning methods

Pruning is often considered to be the most important part of the tree building task. Most approaches

work using estimates of error and attempt to find a pruned subtree of the grown tree that minimizes

this error estimate. Because the trees have been grown to "fit the data", these error estimates are
usually pretty coarse.

To explain these methods, a few new terms will have to be introduced.

Root: A root is the starting or parent node of the whole tree.

Pruned subtree: A pruned subtree of a tree is formed by turning some of the nodes in the tree

into leaves. A pruned subtree must have the same root as the original tree. So the root of a

treeisthe smallestpossiblepruned subtree,and the treeitselfisthe largestpossiblepruned
subtree.

Sample errorestimate: An estimateof the predictionerrorfor a decisiontreecan be found by

pumping a sample, N examples,through the treeand counting the number oftimes E that

3.3. TREES 3-7

the tree misclassifies the examples. The estimate of error for the tree is then _. When the
sample used to form the estimate is independent of the sample used to grow the original tree,
rids gives a good estimate.

Standard error of estimate: The standard error is intended to be an estimate of the standard

deviation of the estimate. Given a proportion p derived from N examples, the standard error
is given by

Because some error estimates are derived in an unusual way, this formula is not always

appropriate. However, it is often used anyway because it is an estimate where no other might
be available.

With these in hand, a few error estimates can now be introduced.

Resubstitution error estimate

The resubstitution error estimate for a tree T is a sample error estimate. But the sample used to

estimate error is the sample that was used to grow the tree. Because the tree has been "grown
to fit the sample n, this is usually an underestimate and the standard error of the estimate is not

appropriate.

When a tree has been pruned without smoothing (i.e., if tprune used either "-n" or "-B" but
not the smoothing option "-b"), and u was very low (e.g. "-A0.0001" or similar was used), this
estimate is reported by tclass in the entry:

Expected accuracy for tree I = ...

Naive Laplacian Error Estimate

The naive Laplacian error estimate is intended to correct problems with the resubstitution error

estimate, but only does a poor job. Suppose there are L leaves of the tree T having nl,..., nL

examples and el,..., eL errors when the resubstitution estimate is calculated. The resubstitution

estimate is given by

N

whereas the naive Laplacian estimate takes the Laplacian error estimate at each node _ (Cnl +
is the number of classes) and averages these using a Laplacian estimate of node probabilities to get
the error estimate

L

For large n_, the two estimates become indistinguishable. Again, because the tree has been Brown

to fit the sample, assumptions under which Laplacian error estimates are applicable axe violated,

so these estimates again tend to underestimate error, but less so.
When a tree has been pruned without smoothing (i.e., if tprune used either "-n" or "-B" but

not the smoothing option "-b"), and a was 1 (e.g. "-AI"), this estimate is reported by tclass in
the entry:

Expected accuracy for tree I ffi ...

3-8 CHAPTER 3. LEARNING TREE CLASSIFIERS

Cross-Valldation Error Estimate

Cross-Validation (CV) error estimates are used to estimate the error for a tree growing method

rather than a particular tree. The ides is that, rather than making use of a sample to build a tree

and a further sample to test the tree, you can manufacture several pseudo-independent samples

from the original sample and use these to get s better ides of the error of the tree growing method.

The general technique takes a tree growing method M and estimates error of the method as
follows.

1. Split the original sample S into v like-size disjoint samples 5'I,..., S_.

2. For i = 1,...,v,

(a) Build a tree using method M on the training set S - Si.

(b) Determine the sample error estimate R_ using the test set St.

3. Form the CV-error estimate as

i=1

To calculate the standard error of this estimate, the usual standard error formula is used.

This error estimation technique is guaranteed to give good estimates as the sample sizes become
large. Breimau et al. argue from their empirical studies that v should be set to about 10. Cross

validation can also be used as a means of evaluating a tree building method on a test set using
many different samples with independent test sets.

This estimate can be obtained by using ttest with the u-C" option.

Error Estimate Pruning

A simple pruning approach by Bratko and Niblett prunes a node to a leaf if the naive Laplacian

error estimate for the leaf at the node is less than the naive Laplacian error estimate for the subtree
at the node.

Cost Complexity Pruning

Several cost complezity pruning methods make use of the notion of cost complexity. This is a

measure of the resubstitution error of a tree further penalized by the size of the tree. Its main use

is for forming a sequence of increasing pruned subtrees of a tree T; root of T has a pruned subtree

T1, which has s pruned subtree 2"2, ..., which has a pruned subtree T. Without introducing such

a notion, there is no real way of progressively pruning a tree in an ordered manner.

Cost complexity at level a for tree T, Ra(T): This is the formula

R_.(T) - _ubJtitution-error-e_timate + alleaves(T)[,

where [leaves(T)[denotes the number of leaves in the tree T. The substitution error estimate

is usually computed on a test set. Once again, notice that this is an additive function of the
nodes in the tree.

3.3. TREES 3-9

R,,-minimizing subtree of T: This is a pruned subtree T _ of T such that all other pruned subtrees

either have a greater cost complexity at level a or they have the same cost complexity and they

have T I as a pruned subtree. The Ra-minimizing subtrees as a decreases form an increasing

sequence of pruned subtrees. Finding the R_-minimlzing subtree uses a standard algorithm

for finding a pruned subtree _zing an additive function. This is obtained with the "-c"

option to tprune and using a as the option argument.

Minimum errors subtree of T: This is the R0-_zing subtree of T, or the smallest pruned

subtree of T having the least substitution error. This is obtained with the "-cO" option or

the a-M" option to tprune.

With these definitions in hand, we are now in a position to describe two more pruning algorithms.

The first a test set to estimate error and determine at which level cost complexity pruning should
be done.

The cost complezity pruning algorithm with test set [3, p79,p309] uses cost complexity to give an

easily computed nested sequence of pruned subtrees and a test set to give "honest" error estimates

for the pruned subtrees.

1. Spilt the sample into two disjoint sets, a training set and a test set.

2. Grow a tree using the training set.

3. Find the mi_imllm errors subtree for the test set and compute its substitution error estimate

R0 from the test set and the standard error of the estimate SEo.

4. The pruned subtree is now the Ra-minimi_ing subtree at the maximum level of a so that the

pruned subtree has a substitution error estimate from the test set of less than Ro _- SEo.

Stopping after Step 3 computes the so-called 0-SE tree. Stopping after Step 4 computes the 1-SE

tree. Both can be obtained using the "-c" option to tgen.

The cost complezity pruning algorithm with cross validation [3, p?9,p3C_,! uses cross validation

to form test sets instead. This is identical except that cross validation is used to estimate error.

1. Choose v disjoint subsets of the sample for cross validation.

2. Find the level of a _g the CV-error estimate for the R_-minimizing subtree (i.e., the

tree building method is grow a tree and find the Ra _zing subtree). Let R0 be the error
estimate and let SE0 be its standard error for that level of a.

3. Find the maTirnnm level of a so the CV-error estimate for the Ra-rainimizing subtree is less
than Ro + SEo.

4. The pruned subtree is now the Ra-minimizing subtree constructed on the full sample.

The so-called 0-SE rule is obtained by ignoring Step 3. Either method of pruning is obtained using

the "-C" option to tgen.

3.3.5 Handling Unknown Attribute Values

A problem that occurs commonly in practice is where examples are incompletely specified in the

sense that their class is given, but some attribute values remain undetermined or unknown. This

is often referred to as the problem of unknoum values.

3-10 CHAPTER 3. LEARNING TREE CLASSIFIERS

There aretwo situationswhere thisproblem arises.The firstiswhere we have unknown values

in the trainingsample used to grow the tree.The problem ariseswhen we are to choose a new

testat a treenode. How do we treatthoseexamples forwhich the testoutcome isunknown: how

do we evaluatethe testand would we subsequentlypartitionthe examples? The secondproblem

ariseswhen we come to classifya new example. As we pass the example down through the treeto
a leaf,what do we do ifone of the testoutcomes isunknown?

A precisestrategyfor using a classprobabilitytreeT to classifyan example z having some

unknown attributevaluesisto process the example down through severalbranches of the tree,

weighted by the probabilitythat the example could occur at that branch. This followsfrom the

probabilityidentity

n

Pr(clz,T)= _ Pr(cll,T)Pr(llz,T) ,
/----1

where Pr(llz,T) denotes the probabilitythat the example z belongs in the/-th leafof T, and

Pr(cll,T) denotesthe probabilitythatthe classisc giventhatthe example belongsin the/-thleaf

of T. Ifallattributevaluesofz are known, Pr(/[z,T) is1 forthe leafIto which the example z

belongs,and 0 forallothers.Ifsome attributevaluesare not known, the unitprobabilitymay be

distributedacrossseveralleavesto which the example couldbelong.

Quinlan has made an extensiveempiricalstudy ofvarioussuggestedsolutionstotheseproblems

ofunknown values[32].Some ofthe methods compared includedignoringexamples with unknown

values,fillingin the missing valuessomehow, splittingan example intoa setoffractionalexamples

with unknown valuesfdledin,or treatingunknowns as a separateoutcome foreach test.Several

ofthesestrategiescan be implemented with the "-U" optionin tgen and tclass.Not surprisingly,

the best approaches were those that worked in accord with the strategygiven previously.One

placesan example with unknown outcome proportionallyto each testoutcome or branch during

testevaluation,partitioningand subsequent classification.For example, when the counting table

isbuilt,an example with classci whose testoutcome isunknown has itsunitweight distributed

acrossseveralof the rows in the column headed cI. This means the counts in the tablewillnot

necessarilybe integer.During partitioning,an example with testoutcome unknown may be passed

down severalbranches but such thateach branch only getspart of theunit weightof the example.

Finally,the same isdone when a new example isto be classified.

3,3.6 An Example of Growing a Tree

Consider an LED display as drawn in Figure 3.2. The LED represents digits 0-9. The display is

faulty, each element has 10% noise applied independently of the other elements. This is the LED

example popularized by Breiman, Friedman, Olshen and Stone [3].

The classification task is to predict the digit intended to be represented by a particular con-

figurationof the display.The learningtaskisto learna classifierfrom examples. The theoretical

maximum predictionaccuracy obtainableforthe classificationtaskisabout 72.7%.

Table 3.3 givesa part of an LED data setused to grow 2 trees.The fullsample used to grow

treesgiven below has 100 examples. The firstrow reads aelementsL2, L3, L4 and L6 are on and

the remainder are off,and the digit4 was being represented".

The treein Figure 3.3 is formed by growing a tree to completion and then pruning using

Quinlan'spessimisticpruning algorithm.

3.3. TREES 3-II

L2

L5

LI

L4

L7

L3

L6

Figure3.2:The LED display

digit L1 L2 L3 L4 L5 L6 L7

4 n y y y n y n

8 y y y y y y n

6 n y n y y y y

6 y y n y y y y

7 y n y y n y n

2 y n y y y n y

1 n n y n n y n

9 y n y y y y y

2 y n n y y y y

5 y y n y n y y

2 y n .y y y n y

9 y y y y n y y

3 y n y y n y y

7 y y y n n y n

Table 3.3: Part of a learning sample for the LED task

Z nk_roo -p -an dig
Z _prin_ -¢ dig.at_r dig._reec

The tree has a true prediction accuracy of 71.0% and has 18 nodes. Each line represents a node in

the tree. Non-leaf nodes give only a test outcome, while leaf nodes give a test outcome together with

a vector of class counts. For instance, the first leaf in Figure 3.3 has "0+5+0+0+0+0+0+2+0+0"

which indicates that the digit 'I' occurred five times at the leaf, the digit '7' occurred twice, and

all other digits no times.

The tree in Figure 3.4 is the right hand branch of a tree grown to completion. The full tree has

true prediction accuracy of 68.2% and 69 nodes.

3-12 CHAPTER 3. LEARNING TREE CLASSIFIERS

LS = n:

L1 = n:

I L4 = n: 0+5+0+0+0+0+0+2+0+0

I L4 = y: 0+2+0+0+9+0+0+0+0+0

L1 = y:

L3 • n: 0+0+1+2+0+11+0+1+0+2

L3 = y:
I
I
I
i

L5 = y:
L2 = n:

L2 = y:
I
I
I
I

L4 = n: 0+1+0+2+0+0+0+6+0+0

L4 = y:
I L2 • n: 0+0+0+10+0+0+0+1+0+1

J L2 = y: 0+0+0+0+0+0+0+0+0+8

1+0+12+0+0+0+0+0+0+I

L4 = n: 7+0+0+0+1+0+0+0+0+1

L4 = y:
l L3 = n: 0+0+0+0+0+0+6+0+0+1

l L3 • y: 0+0+0+0+0+0+0+0+6+1

Figure 3.3: The pruned tree

3.4 A Guide to the Literature

The standard textfrom the statisticscommunity isthe CART book [3].Good tutorialpapershave

been writtenby Hart [18],severalby Michie [22,21],Quinlan [29]and Quinlan et aL [33].These

allincludedescriptionsof applications.

Many theseson treesexist,and some of the more recentones are by Buntine [7],Catlett[13],

Chou [15, 16], and Crawford [17].

Further interesting applications are; natural language speech recognition, where several complex

methods were introduced to improve performance [1], and assessing credit cards [12, 23].

Experimental comparisons of s]I varieties exist. Some have compared general methods [43, 14],

some compared components tree tasks such as pruning [31, 24, 26], splitting rules [25, 9], windowing

[44], handling large data sets [13], missing or unknown attribute values [32], and comparisons

between different theories [7, 5]. Always be wary about experimental evaluations because so many
pitfalls exist.

Even a patent exists [36] on a tree growing method.

While it is difficult to survey in a short space the many issues that are of concern to the diverse

research groups involved in tree learning, this section briefly reviews three broad issues that seem

to be most important in extending tree methods. There is also, of course, the re-occurring issues

of stopping, splitting and pruning rules, and treating unknown values.

3.4. A GUIDE TO THE LITERATURE 3-13

3.4.1 Extended Representations

Trees are very verbose in representing certain disjunctive concepts. This was highlighted by Quinlan

[31] who attempted to build a decision tree equivalent to the logical expression

AIAA2AA3 V A4AASAA6 V A7AA8AAg. (3.1)

The smallest possible tree for this expression has 39 internal nodes and 40 leaves, considerably larger

than the representation above, and contains considerable replication in that many different branches

are identical in form. Most significant about this, a tree growing method will need to partition

the data into 40 very fine partitions to grow the tree, whereas a disjunctive rule building method
would (at best) only need to partition the data into 3 partitions, one for each conjunction. Since

finer partitions give less accurate probability estimates, the tree growing methods are considerably
disadvantaged on such problems.

There are many variations on this representation theme and several researchers have considered

solutions. Quiulan has suggested post-processing trees into rule sets [30]. Matheus and ltendell,

and Pagallo have proposed growing trees with conjunctive tests at nodes instead of single attribute

tests [20, 27]. Chou has proposed an efficient algorithm for growing trellises instead of trees [16, 15]
where trellises are directed acyclic graphs with class probability vectors at the leaves and tests

at internal nodes (that is, like trees hut internal nodes can have multiple parents). A related

approach is the _pylons" of Bald, Brown, de Souza and Mercer [1]. Smyth and Goodman [38]

have developed an information theoretic approach to growing "non-directed" rules, that is, rules

with many different attributes in the consequence. Weiss and Indurkhya [42] have developed a rule

learning program that is a CART analog for rules.

An alternative to class probability trees for representing uncertain classification rules is the use

of Bayes or causal nets [19, 28]. These essentially allow a modular decomposition of the attribute

space using principles of independence, sometimes guided by intuition about causality. The simplest

example is the simple (or "idiot") Bayes classifier which assumes all attributes are independent given

class. These are highly competitive with trees on some problems [4, 14] and there is little doubt

that with more thorough net learning approaches, this competitive performance can be considerably

improved. Tree and rule learning methods could be incorporated in these approaches as methods
for learning joint distributions at network nodes.

3.4.2 Extended Search and Alternate Growing Methods

The common framework of all tree growing methods discussed so far is recursive partitioning. This

uses the simple one-ply lookahead strategy of growing a node to depth one for all possible test

combinations and subsequently growing the tree according to the best test.

The question arises, can we do more extensive searches, for instance, a multi-ply lookahead?

There is a problem with this in that lookahead when the number of examples are small, will rapidly

cause performance to deteriorate because the best split may well be just a chance partition of the

small sample into distinct classes. Weiss et al. [43] have demonstrated, in the context of learning

conjunctive rules in noisy domains, that more extensive search can yield good results. To avoid the

problem of small samples, they limit the size of potential rules.

3-14 CHAPTER3. LEARMNG TREE CLASSIFIERS

3.4.3 Incremental Growing Methods

Some researchers have considered the question of how a learned tree can be efficiently updated,

given new data. In the general framework, data arrives in a sequence and a corresponding sequence

of trees is incrementally built. Early work here has been done in a noise-free context by Utgoff

[39], and more sophisticated statistical approaches are suggested by Crawford [17]. See comments
by Buntine in [5, 6].

3.4.4 Theoretical Developments

The theory oflearningtreeshas been developedin severalways recently.Early statisticalwork

was in an appliedcontext,using techniquessuch as cost-complexitywith cross-validationto do

pruning [3].The theory ofminimum encoding,or MDL, has been appliedby Quinlan and Rivest

[34].Proponents of the theoryofm|_irnllmencoding have sincedeveloped thisfurther.Rissanen

includesa chapterinhisbook [35]and Wallaceand Patrickhave refinedthetheoryand implemented

a computer program [41].Bayesianapproachessimilarto and extendingthesearedevelopedin [7,5].

3.4.5 Support for the Knowledge Engineer

An important issueraisedin the introductionof thisthesisisthat learningof classificationrules

istypicallyperformed as a serviceforthe knowledge engineer.So a learningalgorithmshouldnot

justpropose a classprobabilitytreesuitedfor the classificationtask,itshouldprovide any other

information--maybe alternativeclassprobabilitytrees--thatmight assistthe knowledge engineer
with his duties.

Severalgroups have addressedthisissueby making treelearningmore interactive.A surveyis

given by Buntine and Stifling[10],and Shapiro'sthesisalsocoversthe topic[37].

Some forms ofinformationthatmay be of use are:

Accuracy prediction: What kinds of accuracy (ormore generally,performance) shouldbe ex-

pected from the treesuggested?

Options: Are there any other treesthat could justas wellbe used, and what isa measure of

theirsuitability?

Ratings of tree components.* At choicepointsinthe treebuildingprocess,severaloptionsmay

be available,such as the choiceof whether to prune a node and the choiceof testto make at

a new node. How good are thesedifferentchoices?

Confidence: What isour confidencein any of the above predictions?

Variousforms of theseare developed and have been implemented in the IND package in the inter-

activeinterfaceand are based on the Bayesian theory.

3.4. A GUIDE TO THE LITERATURE 3-15

L5 = n:

L1 = n:

L4 = n:

L6 • n:

L6 • y:

L4 =

I
I
I
I

L1 = y:

0+0+0+0+0+0+0+1+0+0

[L2 = n:

i [L3 = n: 0+I+0+0+0+0+0+0+0+0

[[L3 = y: 0+3+0+0+0+0+0+1+0+0

[L2 = y: 0+1+0+0+0+0+0+0+0+0

y:
L2 = n:

[L6 = n: 0+1+0+0+0+0+0+0+0+0

[L6 = y: 0+1+0+0+1+0+0+0+0+0

L2 = y: 0+0+0+0+8+0+0+0+0+0

L3 = n:

L6 = n:

l L2 = n:

[[L7 = n: 0+0+1+0+0+0+0+0+0+0

[[L7 = y: 0+0+0+0+0+0+0+0+0+1

[L2 = y: 0+0+0+0+0+0+0+1+0+0

L6 = y:

[L7 = n: 0+0+0+0+0+0+0+0+0+1

[L7 = y:

[[L2 = n: 0+0+0+2+0+2+0+0+0+0

[[L2 = y: 0+0+0+0+0+9+0+0+0+0

L3 = y:

L4 = n:

L7 = n:

[L2 = n: 0+1+0+0+0+0+0+2+0+0

[L2 = y: 0+0+0+0+0+0+0+2+0+0

L7 = y

I L2

I L2

L4 • y:

L2

I
I
I
I
L2

= n: 0+0+0+1+0+0+0+0+0+0

= y: 0+0+0+1+0+0+0+1+0+0

• n:

L7 = n: 0+0+0+2+0+0+0+1+0+0

L7 • y:

[L6 = n: 0+0+0+2+0+0+0+0+0+0

J L6 = y: 0+0+0+6+0+0+0+0+0+1

= y: 0+0+0+0+0+0+0+0+0+8

Figure 3.4: Part of the unpruned tree

3-16 CHAPTER 3. LEARNING TREE CLASSIFIERS

Chapter 4

IND Man Pages

4-1

Introduction

CHAPTER 4. IND MAN PAGES

This chapter presents the man pages for IND. Man pages are included for every IND routine that

is callable. Many IND routines, however, never need to be explicitly called by the user. Instead,

these low-level routines are called by IND's higher-level routines. Because of this, it is usually not

necessary to become familiar with all of the routines. We have included all of the man pages here

for completeness, and also to help those who delve deeper into IND in an attempt to modify it.

The main man pages that the typical user of IND should be familiar with are: attributes (this

is just a man page that descn'bes the format of the attribute file--it is not the man page for an

IND routine), mkbld, mkclean, mktree, tclass, tgen (because many of the options specified to

mktree are explained in the tgen man page), tprint, and tprune (because many of the pruning
options specified to mktree are explained in the tprune man page).

If you are interested in experiment control and design then you should like at ttest and the
now out-of-date script truns.

If you are also interested in simple Bayes classifiers you should look at mkcl, bclass, and bgen,
tOO.

4.2 The Man Pages

The man pages included in this chapter were printed with troff using commands such as "man -t

raktree mkbld", etc., and just stuffed into the appropriate part of the manual. This was a lot easier

than converting the pages to I_TF__, but unfortunately means that the man pages lack computer
generated page numbers and might not be perfectly indexed.

COMMAND (I) USER COMMANDS COMMAND (I)

NAME

attributes - describes the attyibute fde format for the IND family of programs

SYNOPSIS

none - not a program (just a man page)

DESCRIPTION

Overview

The attribute file (usualiy a file ending in ".atlr") contains a series of alxribute descriptions that guide

IND's processing 9 f examples. The examples themselves are not stored in the ".attr" file. The corpus
of all examples available for the domain is usually stored in a file ending with ".dta". IND reads the

examples in the ".dta" file and creates u-aining and test sets of examples. Training data is usually
placed in a ".bid" file ('bid" stands for "build") and test data is usually placed in a ".tsC file.

To make this concrete, consider the hypothyroid database in directory /IND/Data/thyroid. The file

"hypo.attr" describes each auribute (including the class attribute) for the thyroid database. Each line in

the "hypo.atlx" describes one attribute. Attribute descriptions include the attribute name, attribute type,

and allowable attribute values. The file "hypo.dta.Z" is a compressed version of all of the thyroid
examples. Each line in the uncom_essed version of this file is a single example containing a

classification and a sequence of attribute values (in the order they are described in "hypo.aUr"). IND

routines sample the ".dla" file to create a training and test set (in "hypo.bid" and "hypo.tst", respec-
tively). Other IND routines then build classifiersusingthe attributedescriptionsin "hypo_tr" and the

examples in "hypo.bld" and place these classifiers in either "hypo.tree" or "hypo.cl", depending on the
type of classifier.

Atlrlbutes and Examplm In More Dcqail

The atlribute file contains a series of allribute descriptions separated by white space (space, tab, new-

line). Each attribute descril_ion ¢mtalns an amibute name, followed by a colon, followed by a descrip-
tion of its type, and terminated with a full-stop (i.e., ".<CR>"). Any identifiers such as attribute names

or attribute value names must be composed of letters, digits or the symbols " -/.'. The symbols "./%"
cannot appe_ in the fi_t or last positions. For discrete attributes, the type description is a comma-

separated list of attribute value names. For continuous atlributes, the type description is a continuous

type, cont, step, norm, followed by a range specifying the minimum and maximum value the attribute
can take, rel_esented as m/n .. nm_ The first atlribute in the au_ibute file must describe the decision
auribute.

The attribute file may have an optional contex_ specification following attribute descriptions. Contexts
arc used to constrain tbe skmpe of _ tree _ can be generated by Igen. Contexts can also be used to

prevent an attribute from ever appearing in a tree (using the form "never").

A context q_ecification consists of the wind "contexts" followed by a colon then a sequence of context

descriptionsforattributes.A contextdescriptionisconstructedfrom the followinggrammar:.

context:'_-

[_t "*q.oN

..M

..m

a111'ibute-naine"never" "." [

amibute-name "onlyif' test "3
literal I
literal "and" ... literal I

"or" ... literal "and" ... literal

"(" test ")" l atom l "not"at oral

"not" "C test ")"
am'ibute-name I

aur/bute-name "=" auribute-value I

am'ibute-name "<" auribute-value I

attribute-name ">" attribute.value

Sun Release 4.1 Last change: local I

COMMAND(I) USERCOMMANDS COMMAND(I)

LIMITS

These indicate that an atlribute should be tested "never" or only if a certain condition holds. The test

consisting of an auribute name alone holds if the attribute has itself been tested further up in the deci-
sion tree. Only the tgen program rigorously conforms to these specifications.

The attribute file may have an optional utilities specification. This specifies the utility "u(c,d)" of
predicting class "c" when the true class is "d". This is specified by a matrix of comma delimited real
values with each block delimited by semi-colons. An example specification for the three class case is:

utilities : 100, 10, 10" 20, 50, 20, 10, 10, 100.

This means u(1,1) = 100, u(l,2)ffil0, u(2,1)ffi20, u(2,2)-50, etc. Utilities are taken into account by the

?class programs when calculating the best decision. The default utility is "minimum errors", or a
man-ix with l's on the diagonal and O's elsewhere.

The auribute file is parsed with a yacc-generated parser, so does limited mot reporting.

An example am-ibute file is shown below.

class:

Experience:

l_nguage:
Sex:
HSC:

Year:.

MathsU:
MatkM:

Faculty:
contexts:

Sex

pass, faiL

formal, repeating, self_taught, none.
assembly, basic, logo, none, other, pescal.
M,F.
cont 200..500.

cont 60 .. 90.

cont 0..4.

coat 0 .. 200°

ARTS, ARTS/LAW, ECON, ECON/LAW, EDUC, ENG.

nt_ef.

Language onlyif not experlenceffinone.

MarkM onlyif MathsU>0orFaculty=ARTS.

The contexts here mean that the attribute Sex shoeld never he tested, the attribute Langauge should
only be tested if Experience has been tested previously to he something other than none, and MarkM

should only he tested if MathsU has been tested to be >0 and if Faculty has been tested to he ARTS.

The example file contains input data (one record per line) matching the atlribute description given in

the attribute file. Fields are sepa'aled by labs or spaces. Below is an example of input data matching

the sml_tr amibute _ Note that every entry in the file must contain a single example. In
particular, this means that them carmot he my bla_k lines at the end of the file

fail formal amembly M 289 82 3 100 ECON

pass formal auembly F 357 81 2 81 ARTS

Other sample atlribute fries and examples databases can he found in "/IND/Data'.

Currently, no discrete attribute or the class can have mine the 32 values. If it does then the problem
probably needs better engineering/slructuring before applying IND.

The maximum number of aan'butes is 250. Again, if the problem has more than this, and they're all

considered "possibly useful', then the problem pvotNthly needs a different non-lree system.

SEE ALSO

mkb/d(1), mktree(l), mkcl(1), bgen(l), tgen(l).

Sun Release 4.1 Last change: local 2

COMMAND (1) USER COMMANDS COMMAND (1)

NAME

bclass - classify a test set using a Bayes classifier

SYNOPSIS

bclass [options] attribute.file cljfle(s) [test_fie]

DESCRIPTION

bclass takes a test set and classifies it according to the given Bayes classifier. The test set has the same

format as the input data for bgen so decision attributes must be given (see attr/blaes(1)).

If the attribute file contains a utilities specification, then average utility is also printed with any statis-
tics, and the best decision is calculated to maximize expected utility. Otherwise the class with max-
imum probability is chosen (i.e., minimum aTors utility).

OPTIONS

--b

--C

--d

--O

-p

"..S

Make summary of performance briefer. Useful if the output is later piped to a statistics pro-
gram.

Print the given class of each example.

Print the decision made by the classifier on each example.

Choose the best decision simply by picking the class with highest Wobability (i.e., ignore utili-
ties).

Print out the probability estimates for each class with each example.

Print a summary of perfonnm_ for the classilier:, accuracy, mean square error, expected accu-

racy (the classifier's prediction of what accuracy it should have got) and an optional average
utility.

Print out the misclassificafion matrix of predicted classes by actual classes.

For the two class case, decide second class if probability of second class is greater than p.
Default is 0.5. If utilities are specified in the description file, p is calculated automatically.

BUGS

Who knows? Hasn't been tested in quite a while.

SEE AI.SO

attr/butes(1), bsen(1),mkcl(l).

g,m D6.1_Qa,b A 1

COMMAND (1) USER COMMANDS COMMAND (1)

NAME

bgen - generate a Bayes classifier

SYNOPSIS

bgen [options] at_bute fle e.xan_es.fle cl fde

bgen [options] stem

DEScILrPTION

bgen takes a file of examples and builds a Bayes Classifier. Real valued attributes are either given a
normal model or a cut-point model, depending m whether the continuous type in the attribute file is

norm or step or ¢ont (see atv'ibutes(l)). The second fcnn uses the stem instead of explicitly specify-
ing the atlribute, examples and output files. It assumes stem.attr and sten_bld exist. Creates stem.cl.

OPTIONS

-A alpha
Set alphato valuea/pha (defaultis0.5).

-4m Force all real valued atlributes to have normal models.

SEE ALSO

a,_r/b_es(1), bclaas(1), m_l(1).

Sun Release 4.1 Last chanue: local t

COMMAND (I) USER COMMANDS COMMAND (1)

NAME

lstat - compute simple statistics on lines of data

SYNOPSIS

Istat [options] files

DESCRIPTION

Istat computes simple statistics on columns in files, such as column means, standard deviations, t-tests

or F-tests and paired t-tests on a pair of columns. The first column is counted from 1. Istat is intended

to be used on the ".trial" files output by ttest. The -T option makes certain changes that make ou_ut
compatible with TeX tabular mode.

Either 'statistics are computed for a single
differentiating the first file from the remainder.
basis, so the _ t-test is used.

file, or with the -F option, statistics are computed

When comparing columns, it is done on a line by line

To check output from ttest for "hypo" files of training set size I000, do
lslat -v 1,2,3,5 hypo.triaLl000,

To do a pa_w,dt-testcomparing the performanceof "mdl" and "cart"trials(seettest(1))do

Istat-F -s1,2 hypo.triaLlOOOmdlhypo.trial.1OOOcart

OPTIONS

-2 Use a 2-tail t-tesL Default is l-tailed.

-4 col-list

Print the mean of each colunm in col-list.

-A col,col-list

Print the mean of the difference between the col-th column and each column in col-list.

-C col,col-list

Print the mean, standard ckviation, t-score and F-score of the difference between the col-th
column and each column in col-list.

-d Be verbose during operation.

--e Suppress usual _ reporting.

-f prec Floats _e to be winted with prec decimal places after the point, default is 4.

--IF Statisticsare now compuled as the diffetesa_between conesponding columns in the firstfile

and subsequent files, with columns are paired as before for the paired t-lest. In this mode, -s
and -S options are identical, etc.

--a te_ In the output, precede the last field specified with a .-s, -v, -V option, etc., with the text text.

col-li,n

The comma-selmrated list of integers, col-list, specifies which columns are to be printed as per-
C._tS.

--q/terns

Only display this many items on a line of output.

-6 col-list

Print the mean and t-score (diffmence from 0) of each column in col-list.

-S col,col-list

Print the mean and the t-score of the diffe:erge between the col.th column and each column in
col.list.

-t text Seperate fields in the output with this text. For use with -T option.

-T rex: Make output compatible with TeX tabular mode. Damn useful for subsequendy generating

tables, text is printed before anything else. If a second -T option is used, then its text is

Sun Release 4.1 Last change:local 1

COMMAND (I) USER COMMANDS COMMAND (1)

printed right at the end.

-v cololist

Print the mean and standard deviation of each column in col-list.

-V col,col-list

Print the mean, and standard devia_on of the difference between the coloth column and each
column in col-list.

SEE ALSO

ttest (1).

Sun Release 4.1 Last change: loca/ 2

COMMAND(I) USER COMMANDS COMMAND (I)

NAME

mkbld - control partitioning of data

SYNOPSIS

mkbid [-cDr] [-p i m] [-P i m] stem [s/ze] [seed]

DESCRIPTION

mkbld is a C shell script that'runs sample and all sorts of clean up utilities in the process of building a
training data set. stem should be a simple file name and not a path name. The script kx:ates or builds
a data file and then partitions that data file into a training set and a test set for use by the learning algo-
ritluus.

mkbld assumes files are stored in the format "stem_xt", wbeae stem is the fi_t argument to mkbid and
the extension e.x: is one o_

".d_"
".bld"

tto_N

".all"

moSh m °

data set of all available examples for domain
the training set or sample
the test set

complete data (enumeration of all p&_sible data)
shellscript,outputsdatatostandardout

The "_ll"setisintendedfordatawhereanexhaustiveenumerationofdatapointsisavailable(e.g.,for

logicaldatasetssuchasXOR). Itisincompatiblewith".dla".The testset('.tst'),isnormallythedata
setminus thetrainingset,i.e.,theremainingdata,unlessthedatawas obtainedfroma "_dl"file,in
whichcasethetestsetwillbe theentire"Jill"file.

Ifthedatafile".dta"doesn'texist,mkbld firsttriestoreconstructitby runninguncompres& andifthat
fails,by runningtheshellscript"stem.sh"togenerateit,

The secondargumentto mlkbldtellshow largethetrainingsetshouldbe. Itisnotrequiredwhen
option-por.Pisused.

The optional third argument specifies a seed for the random number generator used in partitioning the
damsel This allows u'ials to be reproduced laxer on.

OPTIONS

.-£

-D

-p mi

--P mi

-r

If a ".bld" file already exists, then report emx and abort.

Echo the shell commands issued by mkbkL .This is useful for debugging or learning how to
use the system.

Splitthedam file into m partitimm;usethei-th for

the test set, and the remaining m-1 partitions as the training set. Used to simulate cross vail-
dation on a dam set via shell-level commands. Ignores the size pmmeter if specified.

Split the training file (the ".bid" file) into m panitimm; use the i-th for the test set, and the
remainm"g m-I perdlions as the uaining set. The new training set is placed in "stem.bid.i"
where the suffix "i"indicates the imrdtion not included in the file; the i-th partition is placed in
"s_m.tst'. Used to simulale cross validation on a sample of a data set via shell-level com-
mands. Ignores the si:e permneter if specified.

Do sampling with replacement (default is without replacemen0.

SEE ALSO

aaributes(1), n_'ree(1), mkcl(l), samp/e(l).

Sun Release 4.1 Last change: local 1

COMMAND (1) USER COMMANDS COMMAND (1)

NAME

mkcl - make and optionally test a Bayes classifier

SYNOPSIS

mkcl I-D] [--c clopts] [-o geaopts] stem

DESCRIFrION

mkcl runs bgen and optionally bcla_ on the data set with file stem stem. This assumes an attribute file

"stem.attr" exists, an examples file "stem.bid" exists, and, if bdass is to be run, that a test file "stem.tst"
exists. The classifier is output to file "stem.cl".

OPTIONS

-c clopts

Pass ciopts argument as options to bclass. Note that ciopts should be placed in quotes and must
include it's own "-" (e.g., "-st").

--D Echo the shell commands issued by mkcL This option is useful for debugging or learning how
to ese the system.

-o &enopts

Pass &e.opts afgumem as ot_ims to bgea. Note that ge.opts should be placed in quotes and
must include it's own "-" (e.g., "-A 0.25 -n").

SEE ALSO

am/braes(l), _b/d(l), bSe.(1),/g/ass(l).

Sun Release 4.1 Last chan_e: kr.al 1

COMMAND(I) USER COMMANDS COMMAND (I)

NAME

mkclean - clean up mess from mkbid, mktree, etc.

SYNOPSIS

mkdean [-crt][stem]

DESCRIFrION

mkdcan is a C shell script that cleans up any mess due to abnormal termination of mkbid, mktree or

ttest. This means deleting any files "stem.bid", "stem.tst", "stem.tree*", and compressing the data file.
stem should be a simple file name and not a path name.

OPTIONS

-C

,-It

-t

Don't bother com_g data file.

Tar and compress any "stem.trial.*" files.

Don't delete wee or classifier files.

SEE ALSO

ntt2/d(1), mk_'ee(1), uest(l).

COMMAND (I) USER COMMANDS COMMAND (I)

NAME

mktree - make a decision tree and optionally prune and test it

SYNOPSIS

mktree [--a][--cclopts][-D] [-n marne] [--ogenopts][-p propts][-R • n]stem

DESCREPTION

mktree is a C shell script that nms tl_n and optionally tprune and teinss on the data set with file stem

stem. This assumes an aUribute file "stemxmr" exists and a wainin 8 data file "stem.bid" exists, presum-
ably produced by mkbld.

Pruned trees me ont4put to file "stem.tree" if only a single tree is produced, or for multiple trees, to
"stem._ee.l....stem.tree.n".The originalunpruned treeswillhe in"stem.treec",etc.

A typical command sequence to run Irials on the "hypo"data setmight be:

select a sample of 500 data points
mkbld hypo 500

run tgen with "-tuUl -dS", tlxune with "-b",

and t_lass with "-slvg"

mktree -o "-tuUl-d5" -p "-b" -c"-slvg"hypo

Some common fomts me:

CART-I/ke: GINI splits and cost-complexity pruning
using 10-fold _-valid. and 0-SE rule

mktree -o "-8CI0-p0-A0.1" -p "-n" -c "-sly" stem

C4-h3ce: info. gain splits, pes,simis_ pruning
mkn, ee -o "-uUl-A0.1" -p "-en" -c "-sly" stem

MDL-like: Bayes splitsand codingof tree

mktree -o "-uUl -AI -NP-0.69315,-0.69315,02"\

-p "-B" -c "-slvgQ" stem

averaging many m_ using options facility;

take cme with de4xh,m hounds anda_jha (-A)
mkn_ -o "-tuUl-B2,3-J3-K3-d5-s3" -p "-b" -c"-slvgQ" stem

Note that arguments to he _ to tiles, tprune, and tclam should be enclosed in quotes.

OPTIONS

--a Output character format for tree,s as well using tehar.

•-¢ c/opts

Run _ on all trees with options c/opta,with output to standardoutput. The argument

clopta should be enclosed in quotes. See tc/ass(1) for telam options.

-D Echo the shell commands issued by mktree. This option is useful for debugging or learning
how to use the system.

-.i nice Automatically nices everything (see the C shell "nice" command) to this value. Default is I0.

--m datas/ze

Never let any program use more than this memory. Only usually a problem with the -J option

in tgeu. See "limit damsize" in esh. Default is 12Mb (i.e., "-m 12m" or "-m 12000k").

•-m tname

Sun Release 4.1 Last chanee: local I

COMMAND (I) USER COMMANDS COMMAND (I)

Placefreeinfile"stem.lreetname("stem.lre,e" followedby tname).

-o genopts

Pass argument genoptsasoptionsto tgen.Multipleflagswillbuildmultiple_ numbered I,

2,elc. The argument genoptsshouldbe enclosedinquotes.See tgen(1)fortgen options.

.-pIv'opts

Run tprue with optionspropt$ on allfrees.The argument propts should be enclosed in

quotes. See tprune(1)fortpruue options.

--R • n Make (n-l)freesafterthefirstfreeusingthe "-R r"optiontotgen,as wellas any optionsmen-

tionedin the --o oplion(multiple--ooptionsshould not be used). This optioniscurrently
unuseable.

...t cputime

Never let any program use mo_ t_m this many seconds. (See "limit cputime" in the C shell)
Defauk is2000 seconds (i.e. "-t2000").

SEE ALSO

attr_utes(1),mkbld(1),tchar(1),tclas$(1),t&en(1),tprune(1),ttest(1).

Sun Release 4.1 La_ chr,ng_.: Itw.,ql

COMMAND (I) USER COMMANDS COMMAND (I)

NAME

sample - randomly sample lines from a file

SYNOPSIS

sample nlines [-r] [-N Mines] [-o output] [.p p_,ne [-s seed] [-t rejects] files

DESCRIFI'ION

sample does random sampling of lines in a file, with or without replacement. It also allows optional
collection of the unsampled lines for use as a test file. Users of IND usually do not need to call sam.
pie directly. Instead. mkbld (which then calls sample for you) should be used.

OPTIONS

-r

-Na

Sample with replacement. The default is wit_mt.

If n, the size, of the input file is known, the -N option makes the sampfing algorithm more
efficient in space and time.

Put output into 0_/e, otherwise output goes to stdout.

--p p,i,name

Panitiou the file into p equal pieces, no random sampling. Place the i-th partition in the file

marne and the rest go to the usual sample output. Used for cross-validation with i in 1...47.

The first argument a//aes is ignored with this option but some integer still needs to be present.

Use x as a seed to the random number gcactat_.

Put rejects into file (if the -r option isn't used), otherwise rejects a'e discarded. Rejects a'e
lines not included in the sample.

SEE ALSO

m*b_dO).

Sun Release 4.1 Last change: local I

COMMAND (I) USER COMMANDS COMMAND (I)

NAME

tchar - convert a tree to or from character format

SYNOPSIS

tchsr [--a] am_bute fde treein treeout

DESCRIPTION

tchar converts a tree from usual binary format to character format. This can be useful for manual

pruning or alterations to the tree. Convert the tree to character form, edit, then convert back to binary
form. It can also be used for creating input to tllendta, or for transferring trees to another computer.

Each line contains an indented node description. Lines ale in printed in a different order to tprint
(with a right to left pre-order traversal instead of a let_ to right). Fields are: node type, class counts for
examples at that node for each class followed by the total count, and leaf probability in parenthesis.
Test nodes have additional node-flags (see data structures), and a representation of the test made (cuts
begin with 6, discrete splits with 10). Option uees axe more complicated again.

For example, given the Iree below, grown using "mktree -o '-tA1 -P0,-0.7,02' hypo" and printed using
"tprint -cd hypo.attr hypo.tree",

TSH < 6.05:+0+31840+0 negative
TSH >= 6.05:

TSH measured = f: +0+36+0+0 nesative
TSH_measured = t:
I FTI < 64:

I I query_hypothyroid= f:
I I I T4< 1.45:+0+0+13+01ximmv_hypothyroid
I I I 1"4>= 1.45:+0+1+0+0 neptive
I I query_hypothyroidffit: +0+I+I+0 primary_hypothyroid
I F'TI >= 64:

I I onJhymx/ne-f:
I I I T4_measured= f: +0+0+1+0 primary_hypothyroid
I I I T4_measuzed= t: +23+0+0.,.0compemated_hypo_yroid
I I on_thyroxine= t: +0+6+0+0 negative

and running "tchar hypoamr hypo.mte hypo.ctr ; cat hypo.ctr" we get the following:

SIZE: 15 8 0 0
PRIOR: 1 0 -0.7 2 0 20

I, 23+362+15+0 = 400 (0) 20 6 18 6.05 (0.000000 0.000000)
1, 234444.1540 -- 82 (0) 20 10 17 (0.0O0000 0.00OOO0)

1, 23+8+15-,0 -- 46 (0) 20 6 26 64 (0.000000 0.000000)
1, 2346+1+0 = 30 (0) 20 10 3 (0.000000 0.000000)
2, 04.6+040=6(0)
I, 23+0+I+0 = 24 (0) 20 I0 23 (0.000000 0.000000)

2, 23+0+0+0=23(0)
2, 0+0+I+0 = I (0)

1, 0+2+14+0 = 16 (0) 20 I0 10 (0.000000 0.000(300)
2, 0+I+I+0 = 2 (0)
I, 0+1+13+0 = 14 (0) 20 6 24 1.45 (0.000000 0.000000)

2, 0+1+04.0 = 1 (0)
2, 0+0+13+0 = 13 (0)

2, O+36+O+0=36(O)
2, 0+318+0+0 = 318 (0)

Notice the node and leaf counts respectively ax_ given after "SIZE", details of the original prior

Sun Release 4.1 Last change:local 1

COMMAND (1) USER COMMANDS COMMAND (1)

specified with the -A and -P options are given after PRIOR and each line following represents a node

or leaf. Test nodes begin with 1 and leaf nodes with 2. The first line of counts indicate the training set
had 400 examples, 362 of the most common class. The first test on "TSH" has auribute number 18,
"negative" has class value number 1, etc.

OPTIONS

.-g

..¢

Converts in the reverse dkection (from character to binary).

If its a tree with counts instead of probabilities, assume the leaf counts are correct and total all
other counts and totals accordingly.

SEE ALSO

t&endta(I),tp_nt(1).

COMMAND (l) USER COMMANDS COMMAND (I)

NAME

tclass - classify a test set using a decision tree

SYNOPSIS

tclass [°pti°ns] a:tribute.,_e treejde(s) [test.Jde]

tclaas [options]stem

DESCRIPTION

tclaas takes a test set and classifies it according to the given uee(s). The test set has the same format
as the input data for tlea so a decision atlribute must be given. The second form uses the stem instead
of explicitly specifying the attribute, examples and output files and assumes files "stem.attr","stem.bid"
and "stem.tree"exist.

If multiple n trees Ke input, the final class probability vectors from each tree are merged (by default,

averaged) to give an (n+l)-th prediction. This is termed the "multiple tree". Statistics can be reported
for both the individual trees and/or the multiple tree. The facilities in tllea for generating multiple trees
are currently under repair so this option is cuneatly not useable.

If the attr/bute.fle contains a utilities specification, then average utility is also printed with any staffs-
tics and the best decision is calculated to maximize expected utility. Otherwise, the class with max-
imum probability is chosen (i.e., minimum arors utility).

The usual output mode for telam is fairly verbose. Output will be brief and restricted to a single line
with the --b option. The order of output in this case is the same as for verbose mode except that no
explanation, etc. will be given, simply a line of numbe_. The order for a single tree is as follows: per-
centase conect, half-brier sax'e, predicted percentage axrect (with --s option), standard deviation of
prediction (with -v option), log posterior pm_b'tlity (with --g option), node count and expected number
of nodes(with-Ioption), utility on training sample (if utilities exist in attribute.,fi/e.), and if the tree
was grown with crees validation, the cross validation estimate of percentage accuracy and its standard
deviation (with-43olxion).

OPTIONS

-A a/pha

Same opticm as for rose prior as in tim.

-b Make sunmmty of performance briefer.
gram.

-c

-D

-d

.=¢

-tl

-G

Useful if the output is later piped to a statistics pro-

Print for each example the given class. This ot_on combines nicely with olxion -<1.

Print for each example the decision for each tree (use with the -in option).

Print for each example the decis_'on for the single tree, or if several trees exist, the multiple
tree. This option combines nicely with option -c.

Printfro"each example a_l for each treewhether the decision agreed with the actual class

(l---yes,{),,no).Usefulforcompenuivestatisticalanalysisofnee accuracy.

Printouttheposteriorforthetreesaswell (lakmfromtheheader).

Assuming the uee was gmermed using the -C option of tim using cost-complexity pruning,
this prints out the enur estimate forthetreecalculatedduring the cross validationprocedure.
Only works if the tsee was pruned with the -It option rather than Bayes pruning. Notice the
estimate will be biased because the cost-complexity tradeoff parameter was selected to minim-
ise errors.

Print out the leafcount (lxxh the expected and actual sizes) for each tree.

Classify multiple trees, where n is the number of trees. The n trees are listed in the tree file(s)
argument. If the -m option is not used, one tree is assumed.

COMMAND(1) USER COMMANDS COMMAND (1)

-O

-P

-p

-q

-8

-6

-V

-W

-Z

Choose best decision simply by picking the class with highest probability (i.e. ignore utilities).

For each example, print out the probability estimates for each class and for each tree (use with
the --m opUon).

For each example, print out the probability estimates for each class for the single tree, or if
several tre._ exist, the multiple tree. When coupled with the -v option prints their variance as
well.

Print out details of the tree prior (assumed constant across multiple trees) once at the begin-
ning.

When using multiple uces, prints out a ntmix representing differences between trees. The
second row and column of the matrix re_ the differences of other trees with the second

tree, etc. (the last row and column, the multiple tree). Useful for determining which single
tree is most similar to the multiple tree. Differenc_ are measured in terms of the proportion
of examples on whose classilication two trees disagree (in the upper triagonal) and the average
over the examples of the manhattan distance between class probability vectors produced by two
trees on an example (in the lower triagonal).

Print out a summary of performance for each tree (use with the -m option).

Prim a summary of performance for the single tree, or if seva'al trees exist, the multiple tree.
This includes accuracy, mean square ¢gror, expected accuracy (the classifier's prediction of
what accuracy it should have got, found by averaging the class pm_bilities at the leaves) and
an optional averageutility. Expected accuracy is usually an over estimate, except in the case of
a small tree with "lots" of data, or in tbe cue of an option tree bailt using t_e -J option to
ti_ and _stic priorImmneter_

Printout withthe othersta_s a misclmific_on matrixof predicted classesby actual
classes for trees (either the -s or the --$ options must be used).

How to handle unknowns when classifying. The methods available are:

1 Send the unknown down each branch with Wo[x_on as found in the training set at
that node.

3 Send unlmown clownthemostcommon branch(the default).

4 Send the unknown down a single Manch chosen with _ility prolx_onal to that
found in the training set at that node.

For each example, a variance of the expected accuracy is calculaw_l. The average of these

vm_aces is then pt_tetg Unfcruma_y, this is not a variance for the expected accuracy of the
sample (this much tm_e complicatedformula is not calculated), bat the value gives a generous
over-estim_ of the imp_isiou in the expected accuracy of the sample.

"wl ... _.

When averaging class Wob_ties from multiple trees, weight the i-th tree by the weight wi
(only use with the -m option). Weights are white _ delimited (so the argument must be
enclosed in quotes). To _ the argumeat automatically, thud and an awk-like program
may be usehfl.

By default, leaf ncgles which have zero count are assigned the same class probebflities as their
parent. With this flagset,zero-countnodesme assignedtheclasslzrobebilities found at the root
of the tree.

SEE ALSO

tgen(l), tprune(1), mksree(1),ttest(l).

COMMAND (I) USER COMMANDS COMMAND (I)

NAME

tgen - generate a decision tree

SYNOPSIS

tgen [options] attribute._le ezwnple.file tree.j_le
DESCRIPTION

tgen takes a data set (see attr/butes(1) for a description of the data file formats and/IND/Data/thyroid
for a sample data set) and builds a decision tree. Options allow CART style cost-complexity pruning
by test set or by cross validation, and a wide variety of spfitting rules such as Bayesian, information
gain and GINI methods. Subsetting is implemented. Various hacks exist for handling missing values.
Lookahead can be programmed with the -13 option, and early stopping (pre-pruning) with the -11
option. Interactive mode (the -o option) also displays graphs under X.ll of the cut-point profiles, if
you wish to control the growing operation more closely.

The Bayesian option trees for averaging is started by combining the -B, -L and -K options. This is in

development stage, and is a simplistic search that requites large amounts memory and time, so it may
have to be nursed. See option descriptions and bugs. The -B option allows n-ply lookahead during
splitting (all other splitting rules use 1-ply lookabead). Use 2 or 3-ply to get better performance on
small problems, or combine with the --bq2 option in tprtme to get even more sophisticated search for
the single best tree. Option trees are initiated with the -J option, and are best combined with solid

stopping rules such as a depth bound (the -d option), and the set size bound (the -s option). The -K
option is for post-pruning of option trees only. A typical option combination might be:

tgea-t-B2,4 -J4-K4 -(t5 -s4 ...

Appropriate depth and set size bonnd should be chesen with the appticatim in mind.

OPTIONS

--a Write out uee in character format instead of usual binav/.

-A a/pha

Probabilities at leaf nodes are calculated using the Laplace formula:

(#this-class + a/pha/#classes)/(#total+ a/pha).

where

#this-clam = count for this class at this node
#toufl = total count at this node
#classes = number of classes

Note the class f_equencies sam m 1. The default is a/p/roll. This flag also effects the open-
tim of the -t flag because a/pha is used as a prior parameter. See also the -P options.

-e depO_/_eadth[/act]
When uee growing there is an initial beam-seasch n-ply iookabead phase to evaluate the qual-
ity of each test At each step when doing this, choose the best breadth choices for each test
that_ withinfactof thebest,and add theseas options on the search beam. Lookahead to
depth depth.Only _ with the -t o_on. Default value8 are 1,1,0.130001.

-c prop Build tree from a proportion prop of the examples selected at random; prune tree using cost-
complexity pruning with test set on remainder. A typical value to use is 0.7. See the --(3
option in tdass for displaying the error estimate, and the -p option below for setting the stan-
dard errors.

-C folds
Build tree using fo/ds-fold cress-vnlidation c_t-complexity pruning. CART recommended

value is 10-fold. See the -G option in tclam for displaying the error estimate, and the -p
option below for setting the standard on'ors. A second -C folds on the command line will have
tgen report additional information calculated during_e pruningoperation.

Sun Release 4.1 Last change: local 1

COMMAND (l) USER COMMANDS COMMAND (I)

-d depth

S_ps buikfing tree after depth depth. By default is set to number of attributes plus twice the
number of continuous attributes.

-g Use GINI index of diversity when splitting.

-J breadth[_act[,add.fact[,le_f.fact]]]

Does option tree growing with magic numbers m alter the search strategy, and requires use of
the -13 option (at the very least, -131,2). After initial iookahcad has found a candidate set of
tests nodes, grow as cfisfinct optional sub.t_e,s the best breadth test nodes within fact (default =

0.005) factor of the best. The last two magic numbers modulate early stQpping or pre-pruning.
Only grow _ node if the non-laff pcotmbility is wifltin a facto¢/ear=fact of leaf probability
(default = 0.00001, make this closer to 1.0 to stop earlier) and if the non.leaf probability is not
greater than a factor add.fact of the best test to grow (default=0.75, make this smaller to stop
earlier). This opuom is only supported with the -t option. Should be used with options --d and
-s to help limit search and opeon -K to save memory.

-K breadth[fact]

Does post-imming on option u'ces with magic numbers m alter the search. Keep only the best
breadth (default ffi 1) option branches and only choose those within a fact (default ffi0.005) fac-
tor of the best. Only suppmed with the -t option.

--M Manhall nmdifr.afion to gain.

-N When using the --t or -J options the Bayes splitting rules, etc., ate in effect. For these, a "log
posterior" _ is cmnpmed and used as a rating for the tree (see -g olxion in tclam). This
is usally not quite correct in that the tree prior, as specified with the -P option has not been

normalized. The --N option does the extra calculation necessa_/fo compute this normalizing
comtent,which can thenbe displayedwiththe=Q optionintcla_ The computationcan be
exponentialinnatureiftherearemixedcontinuousormulti-valuedatldbutes.The calculation

is incorrectif subsetting is used. Help avoid this with the -d option, for instance,trysmaller
dep_s fu_.

--o Manual ovenide flag. Allows the user to manually choose which attribute to split on, and print
all sorts of debugging infotmalion while building, thus overriding the. automatic selection

made. A menu of interactive options is available (via the "h" command) to guide the manual
treebuilding process. Setting the "x" togglecan spawn xgrllphprocessesgiving cutpoint
profiles.Thesemay havetobekilledmanually.Thisolxionisn'tsuplxr,ed withthe-13,=Jor
-K options.

-p factor

When cmt-complexity pruning, number of standard deviations m use. Default is 1.0. CART

recomme_ 0.0 for lacger trees and (someOne) gn_ua accuracy.

-P n-w/Z/u,t .wm#ht_J_s]

This olP_m sets tree prior parameters node-weight and leaf-weight (the log-prior for these
nodes in a free). Onlythefitstpmmneterisesw, nfial. If the O2 bit is set in oflag$, mo_y the
node weight by subtracting the log of the number ¢_ test choic_ at that node.

.-r octal-flags

Print uee at the end using the octal coded wint flags octal-flags in_ as described in the
header file/IND/Tree/N_E_. Usefulmainly fog debug.

-6 m/n Turn node to leaf (stop growing) if examples less than m/n.

-S type Allow binary tests on multi-valued discrete amibutes which split the attribute values into two
parts. This is "subseuing" implemented in a simple 8reedy nmnn_, type can be one of the
following:

O0 Regular subsetting of multi-valued auributes, i.e. do splits testing if the attribute is in
a certain subset or not.

Sun Release 4.1 Last chant_: local '_

COMMAND (I) USER COMMANDS COMMAND (I)

02 Do binary encoding of the multi-valued attributes, i.e. do splits testing if the am'ibute
is a certain value or not.

-t Sayes splitting rule.

-u Apportion unknown values whenevaluating splits.

-U n How to handle unknowns when splitting training set. The available methods are:

1 The default. Send the unknown down each branch with proportion as found in the
training set at that node. Not yet convinced the implementation is OK.

3 Send unknown down the most common branch.

4 Send unknown down a single branch chosen with wobability proportional to that
foend in the u'ainingsetat that node.

-w cycles[_t_z]

Do a trick suggested by Wallace and Pmrick to determine the best value of a/pha (the parame-
ter passed to the -A optim). Grow a tree (or option tree) with the initial value of a/pha. Then
adjust a/pha so that the posteriorpmhability f_" the tree (for instance, as printed usingthe -g
Ol_ionto tclau) is at a local maximum for a/0ha. Now grow a tree again usingthe new value
of a/pha. Rei_at until you've done cycles cycles or a/pha has changed no more than accuracy
0.01 from the last cycle. In addition, a/pha is prevented from going below alphamin. A good
cycle maximum cycles would be 4, so that at most 4 uees are grown. When using the -J
option, because of time, it would be belier to use cycles=l. A good value for a/pham/n is 1.0
if you expect high accuracy, and more if you expect less accuracy.

By default, leaf nodes which have zero count are assigned the same class pmbab'difies as their
parent. With this flag set, ze_-count nodes me asaignnd the class probabilities found at the
mot of the tree.

-Z

BUGS

If tgen quits with a message like "memory limit exceeded" or "time limit exceeded" then it still pro-
duces a tree, but has stopped search prematurely. The tree may have been grown in a lob-sided manner

so the perfonnazr.,e of the tree may be very poor. One can extend time or memory limits using limit
(see the -t and -m options in mklres), or decrease the search by decreasing the depth, breadth or fac-

tors in the -13, -J or -K options. It is always useful to check the "log posterior" of the tree using the
-g oPtiou m tclms or the -s clZioa m Ihead, m see if it is mudler than the log posterior for a tree pro.
duced without the -J option. If the -J tree's is smaller, it is probably a lob-sided tree and will perform
poorly. Likewise for "expected leaf count".

When using xip'aph to dig_iay cut-point profiles, you will have to kill the xiP'aph processes yourself.

Probably lots more.

SEE ALSO

mkb/d(l), tprune(1), tc/as$(1), mktree(1), thead(l), tpr/nt(1).

Sun Release 4.1 Last change:local 3

CO_'4D (1) USER COMMANDS COMMAND(1)

NAME

tgendta - generate data to match decision tree

SYNOPSIS

tgendta I--alp] [-i spac/ng] [-a e.xzm_es] [--6 seed] attribute.f de tree

DESCRIFrlON

tgendtll generates data randomly f_m the decision nee and outputs to stderr. The decision tree is

either assumed to be a class pmbebility tree specifying a probability distribution, or, with the -p option,
a logical specification.

OPTIONS

-a Input a tree in character fmmat.

.4' Generate all possible examples (or at least a repeesentative set if real values exist). This option
doeem't make sense without the -p option.

--i spacin8

With the -f option, says that roughly spacm 8 examples will be generated, equally spaced,

when filling in values of real valued auribute. Otherwise, two diffenmt values will be given at
each leaf.

-a exam_es

Number of examples to generate. Ignored with fl_e -f option.

-p The data (and l_Senmbly the decision tree) has no noise.

-4 seed Seed to initialize the random number generator.

SEE ALSO

tc_-(l).

BUGS

Handling of real values is a hack.

COMMAND (l) USER COMMANDS COMMAND (!)

NAME

thead - print details about a decision tree

SYNOPSIS

them/[options] [-at n] tree ...

DESCRIPTION

them/prints details about Iree(s) built by tllen.
like tools to the -W option in tchtss.

The brief options are useful when piped through awk-

OPTIONS

-A a/pha

Same opliom as for tree prior as in _m.

-i Print number of leaf nodes on one line without ver_ge.

--INS ntree$

Indicates how many trees, ifnm_ than one.

-.P opts Same OlrdOns as for tree prior as in tllea.

"IP Print informatkm about the prior structure stored for the tree (alpha, etc.).

-4 Print leaf count, nodes, and the "weisht" (the "spmb" field) which is the log probability for a
Bayes Ixee.

-t Print number of nodes on one line withoat vegbage.

SEE ALSO

t&en (D, Vz'mw (D, tclas.rgy (D, _ri_u (D.

COMMAND(1) USER COMMANDS COMMAND (1)

NAME

tlrint - print a decision tree

SYNOPSIS

tprint [options] attribute _le tree _le

tprint [options] stem

DESCRIPTION

tprint displays a decision tree built by tgen. The second form uses the stem instead of explicitly speci-
fying the attribute, examples and output files. It assumes "s_m+atlr" and "stem.lree" exist.

Each line contains a test on an atlribute value pair. If the test leads to a leaf, information about the leaf

is printed at the end of the line. If the test leads to a sublree, the sublree is printed (indented four
spaces) below the test.

Using the -t option, a test set can be run through the data to display, at a glance, how the tree classifies

the test set. Useful for finding out where in the tree is making the most errors.

Various other options allow details of internal nodes to be printed, leaf posteriors, standard deviations

of probabilities, and classification probabilities (in an averaged tree, leaf wobabilities usually differ
from final probabilities for examples at that leaf).

If the tree is currently in cotmts form, and the Winting options you specify require it to be in probabil-
ity form, then an _ conversion will be done.

OPTIONS

-A

-41

-b

Same options as for tree prior us in tllea.

Read tree in in character fmmat (ixedeced by telmr).

By default, probabilities displayed using the ..p ooliou are for those at the node. This option
displays the final pm_bilities that would be used by the classification routine, after all tree
averaging has bean done.

--c Display counts of training set examples in each class. The counts are printed out in the same
order as the classes appear in the aaribete file.

-Dn Only print out Iree Io deplh a.

--d Display the best class (the decision). Takes account of utilities or cut-off probabilities.

-E Same optiom as for tree prior as in tgm.

--i Display counts, etc., for interior (non-leaf) nodes as well.

--p Display proportion of each class (number of training set examples in that class divided by the
total number of training set examples at the node). The IXegx_ons are printed out in the same

as the C_ al_pear in the attribute file. If flagged twice, then display standard devia-
tiom as well

-P Same optiom as for tree prior as in qlmt"

-q Display posteriors used by tree averaging routine at each node. At each leaf node, L labels the

posterior probability of that leaf node being in a tree. For options, P labels the posterior proba-
bUity of that option being the lest occurring in a tree.

-t te_.._/e
processesa test file test.fie as wo_id normally be done by tcl_m to produce vectorsof

class counts at each node. These ate lxin_l as for the -c option. The method of handling
unknownscan be set u_ng the -U o_on.

-U n How to handle unknowns when classifying. The available methods are:

Sun Release 4.1 Last change: local I

COMMAND (.I) USER COMMANDS COMMAND (I)

-Z

1 Send the unknown down each branch with proportion as found in the training set at
that node.

3 Send unknown down the most common branch (the default).

4 Send the unknown down a single branch chosen with probability proportional to that
found in the training set at that node.

By default, leaf nodes which have zero count are assigned the same class probabilities as their

parent. With this flag set, zero-count nodes are assigned the class probabilities found at the
root of the tree.

SEE ALSO

t&en(1),t/_ad(1),tclass(1),tprune(1).

Sun Release 4.1 Last change: local 2

COMMAND (I) USER COMMANDS COMMAND (I)

NAME

qmme - prune a decision tree

SYNOPSIS

tprune [options] attribute file tree

DESCRIPTION

tprune simplifies a decision tree by removing (or pruning) sublrees, and then converts the counts in the
nodes to probabilities. Flexible combinations of the different pruning algorithms are available. Can use
depth-bounded pruning, with cost-complexity or pessimistic or minimum errors pruning. Option trees,
however, can only be pruned in a depth-bounded manner. This is then followed by count to probability
conversion with or without Bayesian tree smoothing. The lmmed u'ee is written to the file "tree.p".

OPTIONS
-A

-D

-4)

Same Ol_ions as for tree _ as in tgen.

Prunenode if all subtn_ make thesame decision.Done aftereverythingelse.

Convertcountsto probabilitiesusingLaplacianestimates,and installleafprobabilitiesfor
Bayesiantreesmoothinglaterby tclass.

-B Like the --b oplion but picks the best pruned subtree and gives all its leaves a leaf probability
of I. This correslmnds to doing minimum encoding (MDL, MML) pruning because it prevents
later _ee smoothing.

-.cfactor

Do cost-complexitypruningwith wade-offset by factor. Seealso the -V oven.

..d depth

Before other pruning methods, strip evewtlting below depth depth.

-¢ Pessimistic pruning, one in_tion.

-E Same options as for tree Izrioras in tgtm.

-M Prune to minimum errors suMree.

•-n Convert countsto probabilities using Laplacian esl_ates, and make all leaves have a leaf Wo-
bability of 1, to prevent subsequent Bayesian smoothing by tclnss.

-o options

When tree smoothing, prune node to leaf if it has mote than options options. A good default
value to use is 10.

-p factor

Setprunefactor. The pessimistic pruning algorithm prunes a subtree if its error is within fac-
tor standard erroa of a pessimistic estimate of the em3r. The default factor (when doing pes-
simistic pruning without specifying a factor) is 1.0. Be sure to also use option -e when using
this optim.

-P Same cptiom I for tree wrieras in film.

-q factor

Set prune factor. When tree smoothing (option -4)), remove any option branches whose pro-
portion is less than this value. Default is 0.01. Setting factor to value greater than 1 has the

effect that all o_cn branches other than the best are pruned (this is similar to the -B flag
appliedto option trees,buttheuee isstillableto be smcotbed afterwards).

-.roctal-flags
Print tree at the end using the octal coded print flags octal-flags interpreted as described in the
header file/INDfr_E.h. Useful mainly for debug.

-V tes_le

Use teso_le to determine Irade-off for cost complexity pruning. Default standard errors is 1.0.

Sun Release 4.1 Last change: local I

COMMAND (1) USER COMMANDS COMMAND (1)

Preceed this option with the --c option if you wish to set the standard errors to something else.

SEE ALSO

tgen(1),tclass(1),thead(1).

Sun Release 4.1 _ change: local 2

COMMAND(1) USER COMMANDS COMMAND (I)

NAME

ttest - build and test trees and report statistics

SYNOPSIS

ttest [options] stem size Lgenopts]

DESCRIPTION

ttest is a csh script used to control the running of experiments on trees, stern should be a simple file
name and not a path name. A sequence of training/tests pairs are generated using mkbld, various trees

are builtand testedon these using mlktreewith diffea'entoptions,and statisticscan be collectedin

separatereportfilesor outputto stdiousingtclusLA finalsummary relx_ isoutputtostdiousingIstat.

stem is the dala set stem to use, size is the size of training sets to generate and the optional argument
genopts are default options always passed to tgen when generating trees. &enopts is by default "-uU 3".

Control of which tree generation and imme combinations to use is specified by the -T and -R options.

A typical command sequence to run MDL.like and CART-like trials on the "hypo" data set might be:

ttest -T "-uUI#-tP-.7,-.7,02#-A0.3" "-B" "mdl" \

-T "-uUl#-A0.01#-gCl0_-p0" "#-n" "cart" \

-c -sblv hypo 500

See the description of the -T option, below, to intmwet this. The "#"s are replaced by white space
before being passed to mktree. With this command, ttat will first output the following sununaty,

Running trials:

tgen -uUl -tP-.7,-.7,02 -AI hypo... ; tlmme -B

tsen -uU1 -gCl0 -p0 hypo... ; timme -n
Redirecting remits to:

hypo.trial.5G0mdl

hypo.tr_aL5GOcart

and then proceed to run the trials indicated using files hypo.bld, hypo.uee.1, etc. In this case, for each

tree generated, tclam is run using options "-sblv" and the output appended to the respective report files.

Selection of training/test data pairs is controlled by the -C, -V and -v options. This allows cross vali-

dation, random generation of lWtitious according to a fist of seeds, or cross validation on random parti-
tions.

OPTIONS

-c clopts

Pass these options to telam when generating statistics on individual trees. The default is "
svlb'.

-C folds

When used alone, this option camels the use of a seedfile (see the -V option). Instead

uaining/te_data set pairsare genentted from the fulldata setin cross-validation style with
folds number of folds. This is an inefliciem way of doing crees validation on the full test seL

If this option is followed by a -V or-v option, then samples are first selected (using the sup-
plied seeds) and cross-validstion is done with each of these samples (instead of the full data

set), by sub-partitioning them in turn into a number of folds. This then returns a cross-

validation estimate (with variances) of the statistics produced by running ttest without the -C

option. (i.e. the report file produced with the =C option will be an estimate with variances of

the statistics determined on the test sample without the -C option.)

--d Normally, statistics generated are appended to the existing report files. This option says to

delete all report files at the very beginning so statistics collected represent those generated in

COMMAND(I) USER COMMANDS COMMAND (I)

just this run of ttest.

-D Echo the shell commands issued by ttest. This option is useful for debugging or learning how
to use the system.

-k On abnormal exit, by default mkclean will be called, this option cancels this default.

-! Uopts

Pass these options to Istat when generating the final summary report. The default is "-f 2 -v
1,2,3,7".

-O Output all results to stdio. With this option, the filename m(xlifiea's to the -1" and -R options
are asstmw, d not to exist.

-R ran tr/a/prune name

This is rather like running -T w/a/pruae name five limes and combining the outpuL Maim 4
Ixecs after the fL'St tree using the "-R ran" option to _en, as well as any options mentioned in

tr/a/. Only one -R option can he used, and it is incoml_ible with the -1" option.

-T trial prtmelist namelist

For each value tpr_ in llm space de,mired list prunelist and corresponding name from

nameliat, build a tree using the command "rnku_ -o trial .p tpru_" and append the slalLqics

gaflmmd from Iclass m the file "stem.rtiul.xi_ name", reims is ran with tlm -4> option. Any

"#" in w/a/or tpruneformktree willhe replacedwith a spacecharacter.The name//stargu-

ment isassumed not toexistifoutputistosulio.The listof framingoptionsmeans thatyou

can grow a tree once and then imme it in several different ways to test When pas.mg opdons
"-n" to tprume, always use "#-n" because the mktree implexaenuuion causes a s_nglc "-n" m
disapl_¢_. Tlm -T olsion can occur multiple times (up m 6) and tlm trials will be run con-
currently.

-V seedfde

One triulisran foreach Irain/testpairof thedataseL A listofseedsm'e passedme ata time

m mkenc to _neram these different train test pairs. The seedft/e is a file containing white
spuce-sepsrated imegers to use as seeds. The default is ".Jseeds".

-v seed-li._

Seeds are set f_om [he SlmCe-separated list ol[inlegers supplied as a_menL

SEE ALSO

mkb/d(1), tchar(l), tc/aaa(l), t&en(l), mku'ee(l),

Sun Release 4.1 Last change: local 2

XGRAPH (I) USER COMMANDS XGRAPH (I)

NAME

xgraph - Draw a graph on an Xll Display

SYNOPSIS

xgraph [options] [=WxH+X+Y] [-display host:display.screen] [file ...]

DESCRIPTION

The xgraph program draws a graph on an X display given data read from either data files or from stan-

dard input if no files are specified. It can display up to 64 independent data sets using different colors

and/or line styles for each set. It annotates the graph with a title, axis labels, grid lines or tick marks,

grid labels, and a legend. There are options to control the al_earance of most components of the
graph.

The input fonnot is similar to graph(lG) but differs slightly. The data consists of a number of dma

sets. Data sets Ke sepmaled by a blank line. A new data set is also assumed at the start of each input
file. A data set consists of an ordered list of points of the form "{directive} X Y'. The directive is

eit,_ef "draw" or "move" and caa be omitted. If the directive is "draw", a line will be drawn between

the previous point and the current point (if a line graph is _). Specifying a "move" directive tells
xgruph not to draw a line between the points. If the directive is omitted, "draw" is assumed for all

points in a data set except the first point where "move" is assumed. The "move" directive is used most

often to allow discontinuous data in a data seL The name of a data set can be specified by enclosing

the name in double quotes on a line by itself in the body of the data set. The trailing double quote is
optional. Overall graphing options for the graph can be specified in dala files by writing lines of the

form "<o_im>: <value,>'. The olXioa names are the same as _ used for specifying X resou_c_

(see below). The option and value must be _ by at bl_m one space. An example input file

with three dam sets is shown below. Note that set three is Bx named, set two has discontinuous data,
and the title of the graph is specified nero"tbe topof the file.

TitleText. Sample Data
0.5 7.8
1.0 6.2

"set one

1.5 8.9

"set two"

-3.4 1.4e-3

-2.0 1.9e-2

move - 1.0 2.0e-2

-0.65 2.2e-4

2.2 12.8
2.4 -3.3

2.6 -32.2

2.8 -10.3

After x&rapk has read the data, it will create a new window to graphically display the data. The inter-

face used to specify the size and location of this window depends on the window manager currently in
use. Refer to the reference manual of the window manager for details.

Once the window has been opened, all of the data sets will be displayed graphically (subject to the

options explained below) with a legend in the upper right cont¢_ of the screen. To zoom in on a por-

don of the graph, depress a mouse button in the window and sweep out a region, xgraph will then
open a new window looking at just that portion of the graph, x&raph also presents three control buttons

in the upper left corner of each window: Close. Hardcopy. and About. Windows are closed by depress-

ing a mouse button while the mouse cursor is inside the Close button. Typing EOF (co,lxol-D) in a

window also closesthatwindow. Depressing a mouse button while the mouse cursorisin the Hard-

copy buttoncauses a dialog to appear asking about hardcopy (printout) options. These options are

Sun Release 4.1 Last chan2e: December. 1989 !

XGRAPH (1) USER COMMANDS XGRAPH (I)

described below:

Output Device

Specifies the type of the output device (e.g. "HPGL", "Postscript", etc). An output device is
chosen by depressing the mouse inside its name. The default values of other fields will change
when you select a different output device.

Disposition

Specifies whether the output should go directly to a device or to a file. Again, the default
values of other fields will change when you select a different disposition.

File or Device Name

If the disposition is "To Device', this field specifies the device name. A device name is the
same as the name given for the -P command of ipr(l). If the disposition is "To File", this
field specifies the name of the output file.

Maximum Dimension

This specifies the maximmn size of the plot on the hardcepy device in centimeters, x&raph
takes in account the aspect ratio of the plot oct the screen and will scale the plot so that the
lonser side of the plot is no more than the value of this parameter. If the device supports it,
the plot my also be rotated on the page based on the value oftbe maximum dimension.

Include in Document

If selected, this offJon causu xgrapk to produce _ output that is suitable for inclusion in

other larger documents. As an example, when this option is selected the Postscript output pro-
duced by xsraph will have a bounding box suitable for use with l_fig.

Title Font Family

This field specifies the name of a font to use when drawing the graph rifle. Suitable defaults
are initially chosen for any given hankopy device. The value of this field is hardware specific
-- refer to the device reference manual for detail&

Title Font Size

This field specifies the desired size of the title fonts in points (1/72 of an inch). If the device
scalable fonts, the font will be scaled to this size.

Axis Font Family and Axis F,mt Size

These fields are fike Title Font Family and Title Font Size except they specify values for the
font xeraph uses m draw a_ labe_ and legend descnprions.

Control Bumms

After specifing the ptrameters for the plot, the "Ok" button causes xgraph to produce a hard-
copy. Pressing the "Cancel" button will abort the hardcopy opemtim. Depressing the About
bmmn causes Xipraph to display a window c_taining the version of the program and an elec-
mmic mailing address for the author for comments and suggestions.

xgraph accepts a large number of optiom most of which can be specified either on the command line,

in the usm"s .Xdofaults or .Xresomces file, or in the data files themselves. A list of these options is
given below. The command line eprim is specified fret with its X default or data file name (if any) in
parenthesis aflerwa_l. The format of the option in the X defaults file is "proBnun.optlon: value" where
program is the program name (xgraph) and the option name is the one specified below. Option
specifications in the claw file are similar to the X defaults file specification except the program name is
omitted.

=Wxtl+X+¥ (Geometry)
Specifies the initial size and lecatica of the xgraph window. -<digit> <name> These options
specify the data set name for the com_qx_cdingclaw set. The digit should be in the range'O'
to '6Y. This name will be used in the legend.

-bar (Bm'Graph)

Specifies that vertical bars should be drawn from the data points to a base point which can be

XGRAPH (1) USER COMMANDS XGRAPH (1)

specified with -brb. Usually, the -nl flag is used with this option. The point itself is located
at the center of the bar.

--bb OSoundBox)

Draw a bounding box around the data region. This is very useful if you prefer to see lick
marks rathe_ than grid lines (see -tk).

-bd <color> (Border)

This specifies the border color of the x&raph window.

-hi <colin'> (B_lqF_Rd)

Background color of the x&raph window.

-brb <base> (Bm'Ble)
This specifies the base for a bar graph. By default, the base is zero.

--brw <width> (BsrWidth)

Tl_ specifies the width of ban in a bar graph. The amount is specified in the user's units. By
default, a bur one pixel wide is drawn.

-.bw <size> (Bo_krSi_)

Border width (in pixels) of the x&raph window.

-db (Debug)
Causes xsraph to run in synchronous mode and prints out the values of all known defaults.

-fig <color> 0Forqroud)

Foreground color. This color is used to draw all text and the normal grid lines in the window.

-me (GrklS_)
Width, inpixeis, ofnormal grid line_

-p (GrklStyk)
stylepatternof ncml gridlines.

-.If <fontame> (LabeWoat)

•'.abel fonL All axis labels and grid labels are drawn using this follL A font name may be
pecified exactly (e.g. "9x15" or "-*-couri-bold-r-normal-*-140-,") or in an abbreviated form:
<family>-<size>. The family is the family name (like helvetica) and the size is the font size in
points (like 12). The default for this parameter is "helvetica-12".

0Logx)
Specifies a logarithmic X axis. Grid labels represent powers of ten.

-_y (LosY)
Specifies a logarithmic Y axis. Grid labels represent powers of ten.

-4w wide, 0U_Width)

Specifies the width of the data lines in pixels. The default is zero.

-Ix _ (XLowUmt, XniOLimit)

This t_ott limits the range of the X axis to the specified interval. This (along with -ly) can
be used to "zoomin" on a p_r_cldarly inleeesting po_on of a larger graph.

-4y qi,yb> (YLowLimit, _liillbLhltlO
This opeion limits the range of the Y _ to the specified interval.

-us (Markers)

Mark each data point with a distinctive marker. There axe eight distinctive markers used by
xgraph. These markets are assigned uniquely to each different line style on black and white
machines and varies with each color on color machines.

-M (StyleMarkers)

Similar to -m but markers ale assigned tmiquely to each eight consecutive data sets (this
correslx_ toeachdifferentlinestyleon colormachines).

XGRAPH (1) USER COMMANDS XGRAPH (1)

--ui (NoLim_s)

Turn off drawing lines. When used with -m, -M, -p, or -P this can be used to produce scatter
plots. When used with -bar, it can be used to produce standard bar graphs.

-p (PixeiMarkers)

Marks each data point with a small marker (i_xel sized). This is usually used with the -nl
option for scatter plots.

-P (LargePixels)

Similar to -p but marks each pixei with a large dot.

-iv 0ieverseVidee)

Reverse video. On black and white displays, this will invert the foreground and background
colors. The behaviour on color displays is undefined.

•-t <string> ('ritleText)

Title of the plot. This string is centered at the m¢ of the graph.

--tf <fonmame> fritleFemt)

Title fonL This is the name of the font to use for the graph title. A font name may be
specified exactly (e.g. "9x15" or "-*-courier-bold-r.normal-,-140-.') or in an abbreviated form:
<family>-<size>. The family is the family name (like helvetica) and the size is the font size in
points (like 12). The default for this parameter is "helvetica-18L

-tk frkks)

This option causes xsraph to draw tick marks rather than full grid lines. The -bb option is also
useful when viewing graphs with tick marks only.

-x <uaimame> (XUalfrext)
This is the unit name for the X axis. Its default is "X'.

-y <mtimame> (YUaifrext)
This is the unR name for the Y axis. Its default is "Y".

-zg <color> (ZereColm')

Thisisthecolorusedto drawthezerogridline.

-zw <width> (ZeroWidth)

This is the width of the zero grid line in pixels.

Some options can only be specified in the X defaults file or in the data files. These options are
describedbelow:

<digit>.Color

Specifies the color for a data set. Eight independent colors can be specified. Thus, the digit
shouldbe betweea'0'and "7'.Iftherem'emore thaneightdam sets,thecolorswillrepeat
but with a new line style (see below).

<aigit>.stTe
Specifies the line style for a data set. A ruing of ones and zeros specifies the patmm used for
the line style. Eight independent line styles can be specified. Thus, the digit should be
between '0' and '7'. ff there are am_ than eight dam sets, these styles will be mused. On

color wmttslatims, one line style is used fro"each of eight colors. Thus, 64 unique data sets
can be displayed.

Device The default output form pmsemed insthe hardcopy dialog (Le. "Postscript", "HI_L", etc).

Dislm_tiom

The default setting of whether output goes directly to a device or to a file. This must be one of
the strings "To File" or "To Device'.

FileOrDev

The default file name or device suing in the hardcopy dialog.

SunRelease 4.1 Last change:December, 1989 4

XGRAPH (I) USER COMMANDS XGRAPH (I)

ZeroWidth

Width, in pixels, of the zero grid line.

ZeroStyle

Lille style pattern of the zero grid line.

AUTHOR

David Harrison University of California

BUGS

- Zooming in on bar graphs doesn't work right.

- There is no way to produce hankow/without running xgraph intevactively.

Sun Release 4.1 Last change: December, 1989 5

Chapter 5

Installing IND

5-1

5-2 CHAPTER5. INSTALLING IND

5.1 Introduction

IND is a suite of C programs and C shell scripts for building classifiers (i.e. , supervised learning).
The code is provided (and sometimes even moderately documented) so you can develop your own

extensions. IND was developed exclusively in a SUN workstation environment under various releases

of unO UNIX, and can compile under "cc" or "gcc". The IND package really needs an X.11

interface or something similar to handle all the processing done by mkbld, mktree, and ttest.

Note, ... First time users should see the companion note in "IND/Doc/Release.tex'.

5.2 Overview of the IND Directory

Scripts- The uScripts" directory contains all sorts of useful Ucsh" scripts which are usually docu.
mented in their beginning, and some have man entries.

Statlib- This contains the C library of statistical functions used in the various programs.

Treelib: This contains the C library of tree processing functions for read and write, grow, prune,
etc.

EgHb-. This contains the C library of example and contingency-table processing functions.

UtU" This contains subdlrectories with general system utKities such as sampling and encoding.

Trees: The tree programs are in this directory.

Man. The man entries for most things are included.

Doc: Various forms of documentation exist. The man entries are elsewhere. The subdirectory

"course" details a 4 week 3rd year undergrad, course on trees, part of which is duplicated

in the manual. Latex source for the IND manual is in "manual" which also contains a

bibliography and the RIACS copyright. Ul_elease.tex _ is a LaTeX document that you should
look at before anything else.

Includes The header and include files for the many data structures (trees, sets, examples, ...) are
here.

Data: This is a sample data file directory which you can peruse to get an idea of data formatting,

attribute file specificatimls, etc. Also, run the programs on these to test the system after
instal]ation.

5.3 Installing the Code

1. Check for machine compat_ility by looking at

• Lib/qtdckfit.¢ (top few #defines)

• Include/Lib.h (last few lines)

• Include/SET.h (at the top)

5.4. WARNINGS
5-3

for potential storage type and alignment problems. The system has only been compiled on

SUNs, so expect major problems on other UNIX machines. Some things like alarm() (in
Trees/tgen.c) and Rime() and "struct timeb" (in random.c), and a few others are used, which
tend to be UNIX version dependent.

2. Modify the primary "Makefile" to acid your "BIN" to the file. Then run _make bin". This

will modify all other IND Makefiles in the IND subdirectories so that they know where to
place the bins.

3. Similarly, modify CC and CFLAGS in the primary "Makefile" and run "make cc" and "make

cflags" respectively if yon wish to change the factory-set options.

4. Compile using "make instal]". This will ca/] make recursively in the various subdirectories to

construct the ".o" files, the ".a" libs and then go on to make the programs and put them in
your BIN.

5. This will also compile a sdightly modified version of xgraph that requires certain "Xll/include"
files be on your system. If yon won't be using this, then modify "IND/Makefile" so that

xgraph would not be made, and never use the "x" option in interactive mode.

6. Add the "Scripts" directory to your own path.

7. Add the "Man" directory to your own MAN'PATH.

8. Run "rehash" since you've changed your path.

9. Try running some examples with "make test". Compare the output with "make.test.out".

5.4 Warnings

Software in the "IND/Bayes" directory (the simple Bayes classifier) has only been marginally tested.

The full range of option combinations have not been tested and are not supported. In addition,

options not Hated in the man entries ere not supported. For those looking at the code, bear in

mind it is a research code and various features exist at dLq'erent stages of development. The option
trees and -J option to tgen doesn't have anytime search control so can be difficult to use.

Run-time trouble should real/y only be expected if yon are using the "-J" option in tgen which

builds option trees. This routine does a poorly controlled search so can consume large amounts

of memory and time. Aim the search may cut out prematurely, in which case the results are not

indicative. See the "man" entry for tgen for details.

5.5 Planned Extensions

The code for _ is distributed free of charge (see the Copyright notice in Appendix B) for research

purposes, to allow for all the tinkering researchers like to do on other people's algorithms. In this
spirit, if you would like to make extensions for inclusion in future releases of IND, we would welcome

discussions and suggestions. Bear in mind, your code will be distributed too, and maybe modified

by others in future. Here is a list of wanted extensions that may we]] be under construction by the
time yon read this:

5-4 CHAPTER 5. INSTALLING IND

• X.II interface to the pac_e to reproduce the tasks of ttest, etc. , with a nice point and
click interface, and to allow interactive tree learning [7].

• Extensions to the tree methods such as probabilistic approaches to m_ti-variate splits and
missing values, incremental or large batch learning (e.g., [13]), etc.

• Other lemming algorithms such as rule learning [30, 42], regression and/or back-propagation
[11], learning Bayesian and/or Markov networks [8], and probabKistic variants of case-based
or instance-based reasoning.

• Clean up the search control and interface to the Bayesian option trees (.J option in tgen), to

make this powerful method more accessible. Smarter searching for option trees together with

more compact summm7 tree to allow anytime search and to produce results more readily
presentable.

5.6 Contact and Reporting Your Use of IND

Please notify us of your use of IND. We will then be able to inform you about enhancements, updates

and bug fixes. We ask that you report any application you make of IND, describing the application

and your analysi| of the results. Please feel free to make suggestions about desirable improvements

and extensions, and perceived problem areas. We regard such feedback as an essential element of

the development process. For example, feedback on cha_ges required to get the package running
on other environments are welcome.

Contact details:

emsi]:

post:
indOkronos.arc.nasa.gov

1ND Tree Package
C/O Wray Buntine, RIACS and Code FIA

Mail Stop 269-2
NASA Ames Research Center

Molfett Field, CA, 94035
USA

Bibliography

[I] L.R. Bald, P.F. Brown, P.V. de Sonsa, and R.L. Mercer. A tree-based langauge model for

naturallanguqe speechrecognition.IBBB Trans.on AS and SP, 37(7):1001-1008,1989.

[2] A.It. Baron and T.M. Cover. l_vzlmnm complexity density estimation. IBBB Trans. on IT,
37(4), 1991.

[3] L. Breiman, J.H. Priedman, R.A. Olshen, and C.J. Stone. Clasaification and Regression Trees.

Wadsworth, Belmont, 1984.

[4] W.L. Buntine. Learning classification rules using Bayes. In Proceedinga of the Sizth Interna-

tional Machine/,earning Wod_hop, Cornell, New York, 1989. Morgan Kau/ma_.

[5] W.L. Buntine. Learning dsuifieation trees. Technical Report FIA-90-12-19-01, RIACS and

NASA Ames Research Center, Moffett Field, CA, 1990. Paper presented at Third International

Workshop on Artificial Intelligence and Statistics.

[6] W.L. Buntine. Classifiers: A theoretical and empirical study. In International Joint Confer-

ence on A rtif_ial Intelligence, Sydney, 1991. Morgan Kaufmann.

[7] W.L. Btmtine. A Theory of Lmrning Cla.udfication Rules. Phi) thesis, University of Technol-
ogy, Sydney, 1991.

[8] W.L. Buntine. Theory refinement of Bayesian networks. In Seventh Conference on Uncertainty

in Artificial Intelligence , Anaheim, CA, 1991.

[9] W.L. Buntine sad T. Niblett. A further comparison of splitting rules for decision-tree indue-

tion. Machine I, earning, 1991. To appear.

[10] W.L. Buntine and DA. Stifling. Interactive induction. In J. Hayes, D. Michie, and E. Tyugu,

editors, MI-12: Machine Intelligence 12, Machine Analysis and Synthesis of Knowledge. Ox-
ford University Press, Oxford, 1990.

[11] W.L. Buntine and A.S. Weigend. Bayesian back-propagation. Complez Systems. to appear.

[12] C. Carter and J. Catlett. Asxning credit card applications using machine learning. IEEE
Ezpert, 2(3):71-79, 1987.

[13] J. Catlett. Megainduction: machine learning on very la_e databases. PhD thesis, University

of Sydney, 1991.

[14] B. Cestnik, I. Kononenko, and I. Bratko. Assistant86: A knowledge-elicitation tool for sophis-

ticated users. In I. Bratko and N. LarruP, editors, Progress in Machine Learning: Proceedings

of EWSL-87, pages 31-45, Bled, Yugoslavia, 1987. Sigma Press.

5-1

5-2
BIBLIOGRAPHY

[15]

[16]

[17]

P.A. Chou. Applications of Information Theory to Pattern Recognition and the Design of
Decision Trees and Trellises. PhD thesis, Stanford University, 1988.

P.A. Chou. Optimal partitioning for classification and regression trees. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1991.

S.L. Crawford. Extensions to the CART algorithm. International Journal o/Man-Machine
Studies, 31(2):197-217, 1989.

[18] A. Hart. The role of induction in knowledge elicitation. Ezpert Systems, 2:24-28, 1985.

[19] S.L. Lauritzen mad D.J. Spiegelhalter. Local computations with probabilities on graphical

structures and their application to expert systems. J. Roy. Statist. Soc. B, 50(2):240--265,
1988.

[20] C.J. Mathens and L.A. Rendell. Constructive induction on decision trees. In International

Joint Conference on Artificial Intelligence, pages 645-650, Detroit, 1989. Morgan Kanfi'nann.

[21] D. Miehie. The raperartieulaey phenomenon in the context of software mantlfacture. Proc.

Roy. Soc. (A), 405:185-212, 1986.

[22] D. Michie. Current developments in expert systems. In J.R. Qninlan, editor, Applications of
Ezpert Systern.f. Addison Wesley, London, 1987.

[23] D. Michie. Statistical classifiers compared with decision-tree classifiers as applied to credit

scoring. In J. Hayes, D. Michie, and E. Ty-ugu, editors, MI-IP.: Machine Intelligence lYJ,

Machine Analysis and Synthesis of Knowledge. Oxford University Press, Oxford, 1990.

[24] J. Mingers. An empirical comparison ofprtming methods for decision-tree induction. Machine

Learning, 4(2):227-243, 1989.

[25]

[26]

J. Mingers. An empirical comparison of selection measures for decision-tree induction. Ma-

chine Learning, 3(4):319-342, 1989.

T. Niblett and I. Bratko. Leazning decision rules in noisy domains. In M. A. Brarner, editor,

Research and Development in Ezpert Systerr_ III, pages 25-34. Cambridge University Press,
1987.

[27] G. Pal;silo. Learning DNF by decision _'ees. In International Joint Conference on Artificial

Intelligence, pages 839--644, Detroit, 1989. Morgan Ksufmann.

[28] J. Pearl. Probabiliatic Reasoning in Intelligent Systems. Morgan and Kauffman, 1988.

[29] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

[30] J.R. Qninlan. Generating production rules from decision trees. In International Joint Confer-

ence on Artificial Intelligence, pages 304-307, Milan, 1987.

[31] J.R. Qninlan. Simplifying decision trees. In B. Gaines and J. Boose, editors, Knowledge

Acquisition for Knowledge.Ba_ed Systems, pages 239-252. Academic Press, London, 1988.

[32] J.R. Quinlan. Unknown attribute values in induction. In Proceedings of the Sizth International

Machine [,earning Work.shop, Cornell, New York, 1989. Morgan Kaufmann.

BIBLIOGRAPHY
5-3

I33] J.R. Quinlan, P.J. Compton, K.A. Horn, and L. Lazarus. Inductive knowledge acquisition: A

case study. In J.R. Qninlan, editor, Applications of Ezpert Systera_. Addison Wesley, London,
1987.

I34] J.K. Qninlsa and ll.L. Kivest. Inferring decision trees using the minimum description length
principle. Information and Computation, 80:227-248, 1989.

[35] J. Rissanen. Stochastic Complezity in Statistical Enquiry. World Scientific, 1989.

[38] J. Rissauen and Mati Wax. Algorithm for constructing tree structured classifiers, 1988. Patent
Number 4,719,571.

[37] A. Shapiro. Structured Induction in Ezpert Systetns. Addison Wesley, London, 1987.

[38] P. Smyth and R.M. Goodman. An information theoretic approach to rule induction from

databases. IEEE Trans. on Knowledge and Data Engineering, 1990.

[39] P. Utgoff. Incremental induction of decision trees. Machine Learning, 4(2):161-186, 1989.

[40] C.S. Wallace and P.R. Freeman. Estimation and inference by compact encoding. J. Roy.
Statist. Soc. B, 49(3):240-265, 1987.

[41] C.S. Wallace and J.D. Patrick. Coding decision trees. Technical Report 151, Monash Univer-
sity, Melbourne, 1991.

[42] S.M. Weiss and N. Indurkhys. Reduced complexity rule induction. In International Joint

Conference on Artificial Intelligence, Sydney, 1991. Morgan Kauflxumn.

[43] S.M. Weiss and I. Kapouleas. An empirical comparison of pattern recognition, neural nets,

and machine learning classification methods. In International Joint Conference on Artificial
Intelligence, pages 781-787, Detroit, 1989. Morgan Kaufmann.

[44] J. Wirth and J. Catlett. Experiments on the costs and benefits of windowing in ID3. In Fifth

International Conference on Machine Learning, pages 87-99, Ann Arbor, Michigan, 1988.
Morgan Kaufmann.

5-4 BIBLIOGRAPHY

Appendix A

Glossary

A-1

A-2 APPENDIX A. GLOSSARY

accuracy (of a classifier)A classifiertakes a setof instancesand classifiesthem. Ifitalways

classifiesinstancescorrectlythenitisa perfectclassifier.In domains where measurements and

the classificationitselfmay be noisy or uncertainand some key attributesmay be missing,

itis rarelypossibleto classifyinstanceswith 100% accuracy. The accuracy of a specific

classifyislong-runproportionofclassificationsitgets(or would get)correct.The erroristhe

complement of the accuracy (error+ accuracy - 1.0).This issometimes estimatedfrom a

testset,but cannot by estimatedfrom the trainingset.See "errorestimates'in Section3.3.4.

The theoreticalminimum errorthat can be achievedistermed the Baye8 errorand isthe

lowestpossiblelong-runproportionofincorrectclassificationsachievableby any classifier.

attrlbute_fileThis text filecontainsthe format descriptionfor the examples containedin the

".dta",=.bld",and ".tat"data files.The attn_outeftlecan alsospecifyutilitiesand constraints

on how certainattributesmay be testedin a tree. For example, itispossibleto prevent

attributeA from being testedunlessattributeB has been testedas TRUE furtherup the

tree. For more detailsee the man page attributes(I)and look at the sample attribute_file

"hypo.attr"in the directory/IND/Data/thyroid.

Baye= classifier A Bayes classifier, alJo called, =idiots Bayes", is a simple form of classifier that

assumes the attributes are independent given the class. So to predict the boolean class c
given boolean attributes at, a2 and as, use the formula

P,(cl=t.=2.=.)=
P,(c)P,(at lc)P,(a2lc)P,(aalc)+ Pr(_)P,(atl_)P'(a=l_)Pr(aal_)

Using a logarithmictransformation,thisbecomes a linearmodel ratherlikea perceptron.

Bayesian averaging Using randomizationmethods, we can grow severaldi_erentclassprobabil-

itytrees,each of which shouldbe quitegood. Since we don'tknow which isthe "best"tree,

when classifyinga new example, we can take the weighted average of the classprobability

vectorseach treeassignsto the example. This means we are averagingover the individual

recommendations of the trees.This and other Bayesian components ofIND are explainedin

[7, 5].

Bayesian smoothing A single class probability tree can be pruned in many di_erent ways. When

classifying a single example, thil means that the class probabRity vector assigned to the

example can be taken from the leaf node or any of the interior nodes as well, depending

on where pruning im done. Bayesian smoothing takes a different approach. Since we don't

know the "best" place to prune the tree, Bayesian smoothing takes a weighted average of

the class probability vectors that could be assisned along a given branch. The weights are

determined using approximate Bayesian methods. This and other Bayesian components of

IND are explainedin [7,5].

Bayes splittingrule This splittingruleisdevelopedasa one-plylookabeadBayesian estimateof

the posteriorprobabilityof the splitbeing "correct".Itissimilarto informationgain when

the sample sizebecomes large.This and other Bayesian components ofIND areexplainedin

[7,5].

C4 C4 isthe family of decisiontreelearningsystems writtenby Ross Quinlan that superceded

ID3 [31,33].Recent releaseC4.5 issometimes availableto the academic community.

A-3

CART stands for "Classification And Regression Trees" which is both a program and a book [3].
CART the program is a well known decision tree induction pro_sm with its roots in the

statistics community. It was one of the first such programs avai/able commercially and also

one of the most successful. CART, the book, is an introduction to CART-style decision tree

induction and a reference manual for running CART, the program. The first few chapters of

the book are a ressonable introduction to some of the ideas in decision trees, such as han_g

missing attribute values and cros-validation. Through the appropriate choice of options, IND
can be made to simulate CART-style decision tree induction.

cont (type description) This is an attribute type used to specify that an attribute represents a

continuous variable, e.g. , a real-valued attribute on the interval [0,1]. See the man page for
attributes(I) for more information.

class probability vector Probabilities for a set of mutually exclusive and exhaustive classes are

represented as a vector of probabilities summing to 1.0. So for the classes true and/a_e we

might have the vectors (0.2,0.8), (0.64,0.36), etc. Class probab_ty trees have these at their
leaves.

context A context is an entry in an attribute file that restricts when an attribute may be tested.

It is really a constraint on the structural form of trees that can be grown. For example, a
context s]iows one to specify that one attribute may be tested only if another attribute is set

TRUE. See the man page for attributes(I) for more detail.

cost-complex|ty pruning A way of trading off the s/ze of a decision tree (its "complexity")

against the accuracy of the decision tree (its "cost"). More formally, cost-complexity pruning

seeks to mh_mize SE ÷ aL, the sum of the substitution error estimate SE (the number

of errors the tree makes when tested on the training set) with a constant, a, multiplied by

the number leaves in the tree L. If a = 0, then there is no penalty for a large tree. As

gets larger, the penalty for larger trees increases. For each fixed value of a, there is an

optima] pruned subtree of the original tree that minimizes this sum. Thus, by varying a we

can generate a nested sequence of (pruned) trees, each of which is smaller--and potentially

less accurate---than the tree preceding it in the sequence. A test set may then be used to

estimate the prediction err_ of each tree, and the tree with the lowest prediction error is

then selected from the sequence. To summsr_e, cost-complexity pruning allows an ordered

sequence of pruned subtreu to be created, each of which represents a somewhat different

tradeoff of complexity vs. accuracy. A test set or cross val/dation is then used to pick the

subtree that yieldJ the best prediction accuracy. See chapter 3.3.4 for more detail

cross-validation A way of estimating the accuracy of an induction method (in this case a tree

induction program). This is done by repeatedly holding out a sra_ subset of the available

data, training on the remainder, and then testing the result of induction (in this case the

decision tree) by running it on the held out test set. The estimate is the average of the

accuracies on the held out test sets. This is a good ('Imbiased"), though computational]y

expensive, means of estin_ting predictive accuracy. K-fold cross validation does this by

splitting the data set into It" pieces, and then using It" - I of them for training and the

remainder for testing, to yield/t" di_erent train-test pairs. See chapter 3.3.4 for more detail.

cut point When an ordered attribute (e.g. , an integer or real valued attribute) is used at a node

test, the value at which to split the examples is the cut point for that test. For example, in

A-4
APPENDIX A. GLOSSARY

a decision tree that dealt with fever, if some interior node has the test "temperature > 100",
then "100" is the cut point for the test on the real-valued attribute "temperature".

decision node A decision tree contains two kinds of nodes: test nodes and leaf nodes. Decision

nodes occur only at the leaves of the tree and represent the class to be assigned to any
example that reaches that node. Thus, if an example reaches a leaf node labeled with the

class "has_fever", then that example is classified as belonging to the class "has_fever".

lookahead Decision trees are typically grown using greedy search: at every node to be expanded

by introducing an attribute test, greedy search considers how beneficial each test appears to

be if we grew the tree one level more with that test. In effect, the algorithm is doing local

hill-climbing where every decision about what to do next depends only upon examining the
nearest possibilities.

Greedy node expansion works reasonably well in practice, and makes tree induction efficient

(because very few options have to be considered at any one time), but may not lead to optimal
trees. Sometimes the best attribute test to install at a node is one that is not best in the

short term, but one that would be better in the long term. Lookahead considers trees of

some bounded depth, say 2 or 3 deep, that are likely to be candidates to grow from the node

currently being expanded. It evaluates the expected performance of these trees, and picks
the best tree. It then installs just the first attribute test from the root of this best tree as the

attribute test for the node being expanded.

Depth-bounded lookahead is akin to lookahead in game playing programs (e.g., games like

chess). Instead of just picking a move b_ed on an examination of the current board, most

chess playing programs lookahead several ply to examine the consequences of each possible

move, and to better evaluate which move is best to make now. Depth-bounded lookahead

can increase the performance of the resulting tree. But there is a computational cost to be

paid for this advantage: depth-bounded lo_ahead must examine plausible trees of some fixed

size for each node it expands. This is certainly more expensive than just "looking ahead"

1 node as with standard tree induction, and becomes prohibitively expensive as the depth

of lookahead becomes larger than 3. The implementation of IND uses a beam search when
looking ahead.

expected accuracy (of a elassitler) A classifier takes a set of instances and classifies them. If

it always classifies instances correctly then it is & perfect classifier. In real domains where

measurements and the classification itself may be noisy, it is rarely possible to classify in-

stances with 100% accuracy. The twpected accuracy of a classifier is the expected percentage

of future instances that the classifier will classify correctly. Note that the expected accuracy
is not a measure of how we]] the classifier classified the examples it was trained on, as this

would typically significantly overestimate the classifier's performance on new data. Expected

accuracy is sometimes estimated by testing the classifier on a test set of data intentionally

held out of the training set. Bayesian methods use a more complex formula involving the

predictive distribution of unseen examples to estimate expected accuracy.

GINI index of diversity A candidate attribute test is evaluated by measuring how well it sep-

arates the examples at that node into branches that consist of relatively pure classes. For

example, an ideal attribute test (for the two class case) is one that sends all members of one
class down one branch and all members of the other class down the other branch. Attribute

A-5

tests are rarely ideal, so some measure of how well the test separates the classes is needed

to evaluate how good the test is. One such measure is the GINI indez of diversity. See
Section 3.3.3.

information gain A candidate attribute test is evaluated by measuring how well it separates the

examples at that node into branches that consist of relatively pure classes. For example, an

ideal attribute test (for the two class case) is one that sends all members of one class down

one branch and all members of the other class down the other branch. Attribute tests are

rarely ideal, so some measure of how well the test separates the classes is needed to evaluate

how good the test is. One such measure is the In/ormation gain popularized by (_u_a_ [29].
See Section 3.3.3.

leaf node A tree contains interlor nodes and/ea/nodes. In a decision tree the leaf nodes represents

the classification returned by the decision tree. For non-Bayes decision trees, a leaf node

typically represents a single class, and any instance that ends up in that leaf node is assigned

that class. In Bayes decision trees, each leaf node represents the assignment of a probability

that the instance belongs to each possible class. For example, in a]]ayes tree some leaf node

might repreent the assi_lment that the instance is in class HAS_FEVER with probability

0.99 and is in class NO_FEVER with probability 0.01.

logical data set Some data sets represent situations where all possible combinations of feature

values along with the correct classification can be enumerated. Typically these situations

arise with data sets derived from certain "log/c s functions such as learning a ten bit parity

function. IND treats exhaustively enumerated data sets dhTerently than non-exhaustively

enumerated sets (see mkb/d). Typically, the goal with enumerated data sets is to see if the

induction algorithm can learn the already known concept (or perhaps how efficiently it learns

the concept). Moreover, most logical data sets are brittle--missing a few examples usually

causes a different concept to be induced. For these reasons, IND does not break logical data

sets into sampled training and test sets. Instead, it uses the entire data set for both the

training and test set. A separate _e extent, "._11 n is used by IN]) to indicate that a set of

examples is exhaustive and should not be partitioned.

MD L/MML The minhnum description length principle, and the related mJnfmum message length

principle. These principles use "encoding length" to measure the quality of hypotheses. An

"encoding length s for a tree learned from a sample consists of a code for the tree together with

a code for the classifications in the sample constructed on the basis of knowing the tree and

the example types. These principles are often considered as approximate Bayesian methods

since a non-redundant code length is the logarithm of some probability measure. See [40, 2].

mean square error (of a class;tier) The "true s mean square error for a class probabi]_ty tree is

the average of the squared distances between the "true" class probab_ty vector for an example

and the class probability vector assigned to the example by the tree. This is approximated

and reported by tclass as the half-Brier score, which is evaluated on the test set as

E (o(i)- t.o) + o(i)'
_ree co_ect on ezarnFde i _ree inccx-rect on ezanzple i

where O(i) is the class probability the tree assigns to the i-th example.

A-6
APPENDIX A. GLOSSARY

minimum errors subtree The goalofpruning isto findthe subtreeofthe induced decisiontree

that isexpected to perform best on futureexamples. The pruned subtreethat yieldsthe

fewesterrorson a testset (i.e.,a setnot used fortrainingthe tree)isthe minimum errors

8ubtreeand isusuallywhat we want the inductionprogram to return.

mlsclassiflcationmatrix When a classifierclassifiesa setofexamples,some of theexamples will

probably be misclassified.The misclassificationmatrix isa tablethatliststhe correctclasses

along one axisand the classificationderivedfrom the classifieron the otheraxis.Each entry

i,j inthe tableisthe number of examples oftrueclassithatwere classifiedas classj. Ifthe

classifierisperfect,then only the diagonalentriesare nonzero. The misclassificationmatrix

isusefulbecause itprovidesmore informationthan the errorratealone;the matrix tellswhat

kinds of errorsare being made.

partition (a data get) Typicallya user of an inductionprogram has a single,hopefullylarge,

set of examples from the domain. Usually,itisdifficultto acquireadditionalexamples,so
the user has to make do with the setin hand. But the need to testthe decisiontreeon a

set ofexamples on which itwas not trained(inorder to accuratelyestimate the predicted

performance) means thatthe originalsetofexamples must be partitioned intoa trainingand

a testset. So partitioningisa way of splittingone largeset of examples intotwo or more

smallersetsthat willbe used for trainingand testing.

pessimistic pruning A way of pruning a decision tree. The basic approach is to grow the tree to

full size. Then, for each test node, compute the resubstitution error estimate (the error of the

tree rooted at that node as measured on the original training data) and the standard error

of thisestimate.Prune thistree(i.e.,replaceitwith a leafnode) ifthe confidenceinterval

for the resubstitutionerror(equalto the resubstitutionerrorplus some number ofstandard

errors,typically1)includesthe expected resubstitutionerrorofthe node asa leafnode. The

intuitionbehind the techniqueisto prune away subtreesthat do not perform significantly

betterthan a leafnode would at thatpositionin the tree.See section3.3.4.This pruning

method was used in earlyversionsof C4 and isimplemented in the IND package.

posterior (of a decision tree) Posterior of a true is a measure of the quality of the true given

in units of probability. Posteriors in IND are reported in log-probabilities. The IND system

believes that a tree with log-posterior -75.4 is approximately e2-* times more likely to be the

"true" tree than a tree with log-posterior -77.5. By comparison, a tree with log-posterior

-175.4 can be safely ignored. Trees with similar relatively log-posteriors are alternative can-

didates. In tree averaging, done using the -J option in tgen, trees with high log-posteriors
are collected and stored in an and-or structure.

pruning A tree grown on a training set can "overtlt" that training set. That is, some of the

branches in the tree that are useful for discriminating examples in the training set may not

work well on unseen examples. In effect, the tree has achieved increased performance on the

training data by making distinctions that may not be warranted in the domain itself. (Keep

in mind that if the set of training examples is consistent we could always build a decision

tree that classified the training examples perfectly by making each training example end up

in its own leaf node which would then be assigned that examples class. But this "perfect"

tree might perform quite poorly on the new examples it had not been trained on.)

A-7

Pruning isaprocessofeliminatingmany oftheunwarranted subtreeslowerinthe treeby more

carefullyexamining the effectof allsubtreeson the estimatedperformance of the decision

treeon unseen examples. Pruning is done afterthe fulltreehas been grown insteadof

while growing the treebecause itwould be difficultto evaluatethe usefulnessof some new

testat a node without alsoknowing the teststhat would be in the treeunder it. That is,

pruning ismost accuratewhen the fullsubtreerooted at each testnode can be evaluated.

See section3.3.4fordetailabout difl_erentapproaches topruning.

test set A treegrown on a trainingsettypicallyperforms betteron that trainingset(i.e.,makes

fewer errors)than itwillperform on futureinstancesforwhich itwas not trained.This is

the resultof overfittin8 the trainingset and is difllcultto fullyprevent. Because of this,

the accuracy of the decisiontreeon the trainingdata isoptimisticand not indicativeof the

performance one islikelyto achievewith the treewhen applyingitto futureinstances.Since

we typicallywish to evaluatethe likelyperformance of the treebeforeactuallyusing itto

make realdecisions,itiscommon topartitionthe data availableintoa trainingsetand a test.

The tree,then,isinduced on the trainingsetand subsequentlytestedon the testset.Since

the testsetwas not used when the treewas induced,evaluatingthe decisiontreeon the test

setprovidesan unbiased estimateof the tree'sexpected performance on new instancesfrom

the domain. Of course,thereare other ways of evaluatingthe qualityof a treethat don't

requirekeeping asidea testset:crossvalidation,Bayesian methods and MDL/MML. These

usuallymake more efficientuse ofavailabledata,so givebetterresultson smallersamples.

training set See test set.

uti]itles speciflcat|on (in attribute_file) Utilities (see below) for the domain can be described

in the attributefile.This allowstclassto more appropriatelychoose the best class.Based

on the predictedclassprobabilities,IND seekstomaximise expected utility.

utilltyNot allmistakescostthe same. In medical diagnosis,the costoffalsepositives(predicting

someone has a diseasewhen they don't)may be the cost of a few drugs but the costof

truenegatives(predictingsomeone doesn'thave a diseasewhen they do) may mean death or

permanent damage. These costsare termed utilitiesin decisiontheory (infact,costisthe

negativeofutility)and ones seekstomake a predictionto maximize expectedutility.

WRAY An acronym forWray's RecursiveArbor Yielder,an alternatename forIND.

WRAY'S An acronym for Wray's RecursiveArbor Yield'n System (or Software),yet another
name forIND.

A-8
APPENDIX A. GLOSSARY

Appendix B

Copyright

B-1

THE RIACS SOFTWARE POLICY
January 1988

Copyright O 1987 Research Institute for Advanced Computer Science. All fights reserved. This policy
document may not be altered in any manner.

1. INTENT

This section is only a summary of the intent of this document, and does not represent the
software disudbutiou policy of the Research Institute for Advanced Computer Science (RIACS).

• The software written at RIACS comes with absolutely no warranty. RIACS distri-
burns research and prototype, but no pmductiou, software.

• The software written at RIACS will contain one of two copyright notices, indicating
whether or not it may be redistributed. Prototype software will contain the "res-

tricted distribution" copyright, and is for testing and comments only. Research
software will coutain the "reserved dislributiou" copyright, and may be given to
other parees.

• Any software written at RIACS may be modified and duplicated, however if you
modify any file you must clearly state in the file when it was altered, and who
altered it.

• You ate not allowed to charge for the licensing of any RIACS software you may

redistribute, nor ale you allowed to charge more than a nominal fee for making the
redimibution.

actual

2. THE RESERVED COPYRIGHT

Everyone is granted purmission to copy, modify, and redistribute any RIACS software containing
the following RIACS copyright notice, hereinafter referred to as the Reserved RIACS Copyright, but
only under the RESERVED conditions stated in sections 2.1, 2.2, and 2.3.

Copyright O 1987 Ruearch Imfiuae for Advanced Computer Science. All fights reserved. The RIACS
Software Policy contains _ terms and com/itions on the use of this software, and must be distribut-
ed with any copies. _ file may be redistributed. This copyright and notice must be preserved in all
copies made of this file.

You may duplicate any source code containing the Reserved RIACS Copyright as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each file a valid copy-

right notice such as "Copyright O 1987 RIACS," containing the year of last change and name of copy-
right holder for the file in question; and keep intact the notices on all files that refer to this Software
Policy.

You may duplicate any software containing the Reun-ved RIACS copyright or any portion of it in
compiled, executable or object code form.

2.2. ReservedModification

You may modify your copy or copies of source code containing the Reserved RIACS Copyright
provided that you cause the modified files to carry prominent notices stating who last changed such files
and the date of any change.

2.3. Reserved Distribution

The whole of any work that you distribute or pubfish, that in whole or in part contains or is a
derivative of software, or any pan thereof, containing the Reserved RLACS Copyright, must be made
available to all third parties on tenm identical to those contained in this Software Policy.

You may charge a distribution fee for the physical act of transferring such software, and you may
at your option offer warranty protection, which is not mandatory, in exchange for a fee. You may not
charge a fee for the licensing of reserved software.

You may distribute any software containing the Reserved RIACS copyright or any portion of it in
compiled, executable or object code form, provided that you cause each such copy of this software to

be accompanied by a copy of this Software Policy document; and in addition do the following:

• cause each such copy of this software to be accompanied by the corresponding
machine-readable source code; or

• cause each such copy of this software to be accompanied by a written offer, which

is good for at least one year, to give any third party free (except for a nominal ship-
ping charge) machine readable copy of the corresponding source code; or

• in the case where you me a recipient such software in compiled, executable or

object code form (without the ccm_ouding source code) you shall cause copies
you distribute to be accompanied by a copy of the written offer for source code
which you received along with your copy such software.

3. THE RESTRICTED COPYRIGHT

Everyone is granted permissiou to copy and modify, bet not to redistribute, any RIACS software
containing the following RIACS copyright notice, hereinafter referred to as the the Restricted RIACS

Copyright, additionally subject to the RESTRI_ conditions stated in sections 3.1, 3.2, and 3.3.

Copyright © 1987 _ Institute for Advanced Computer Science. All rights reserved. The RIACS
Software Policy controls specific rams and conditions on the use of this software. In particular, this
software my not be dimibmed to any other party without explicit permi_on from RIACS.

3.1. Restricted Duplication

You may duplicute any source code containing the Restricted RIACS Copyright as you receive it,

in any medium, provided that you conspicuously and appropriately publish on each file a valid copy-
right notice such as "Copyright O 1987 RIACS," containing the year of last change and name of copy-
right holder for the file in qne_ou; and keep intact the notices on all files that refer to this Software
Policy.

You may duplicate any software containing the Restricted RIACS copyright or any portion of it
in compiled, executable or object code form.

3.2. Restricted Modification

You may modify your copy or copies of source code containing the Restricted RIACS Copyright
provided that you cause the modified files to carry prominent notices stating who last changed such files
and the date of any change.

3.3. Restricted Dis_bution

The whole of any work that in whole or in part contains or is a derivative of software, or any part
thereof, containing the Reslricted RIACS Copyright, may not be made available to any other party, in
any form or medium, with the exception that all such software will be made available to RIACS.

4. NO WARRANTY

This software is distributed without my WARRANTY from the National Aeronautics and Space
Administration (NASA), the University Space Research Association COSRA), RIACS, or any person
associated with these organizations. These parties DO NOT accept responsibility for the consequences
of anyone using any of this software, for whether it serves any purpose, or for its working order.

Because all software distributed by RIACS is either research or prototype software, and is free of
charge, NASA, USRA, RIACS, AND ANY PERSON ASSOCIATED WrFH THESE ORGANIZA-
TIONS PROVIDE ABSOLUTELY NO WARRANTY TO THE EXTENT PERMrFrED BY APPLICA-

BLE STATE LAW. EXCEFr WHEN OTHERWISE STATED IN WRITING, ALL SUCH

SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMrrED TO, THE WARRANTIES OF MER-
CHANTABIIXrY, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE. The entire risk as to the

quality and performance of all such software is with you. Should any of this software prove defective,
you assume the cost of all necessary servicing, repair, or correction.

NASA, USRA, RIACS, of any other party who may modify or redistribute software received from

RIACS as permitted above shall in no event be liable for any claims or demands by you or any other
party, or any other claim or demand asalnst NASA, USRA, RIACS, or other party due to or arising out
of your use or inability to use any such software, and you agree to indemnify and hold NASA, USRA,

RIACS, and any other party who may modify or redistribute software received from RIACS as permit-
ted above harmless against all such claims.

$. TERMS

By accepting software and this Software Policy document from RIACS, in any form or medium,
you are accepting the terms and conditions set forth in this document.

You may not duplicate, license, distribute, or transfer any software containing a RIACS copyright

except as expressly provided under this Software Policy. Any attempt to otherwise duplicate, license,
distribute, or transfer this software will terminate your rights under this agreement. However, parties

who have received software from you with dfis Software Policy document will not have their fights ter-
minated so long as such penies remain in full compliance with the tram and conditions herein.

